Part Number Hot Search : 
2SC3296 DTC143X EL7301 4ALVC A1540 T345N 99603E3 SP491E
Product Description
Full Text Search
 

To Download MC68HC908QT1CDW Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.motorola.com/semiconductors m68hc08 microcontrollers non-disclosure agreement required mc68hc908qy4/d 9/2002 mc68hc908qy4 data sheet mc68hc908qt4 mc68hc908qy2 mc68hc908qt2 mc68hc908qy1 mc68hc908qt1
non-disclosure agreement required
mc68hc908qy4?mc68hc908qt4mc68hc908qy2mc68hc908qt2mc68hc908qy1mc68hc908qt1 motorola 3 non-disclosure agreement required mc68hc908qy4 mc68hc908qt4 mc68hc908qy2 mc68hc908qt2 mc68hc908qy1 mc68hc908qt1 data sheet to provide the most up-to-date information, the revision of our documents on the world wide web will be the most current. your printed copy may be an earlier revision. to verify you have the latest information available, refer to: http://motorola.com/semiconductors the following revision history table summarizes changes contained in this document. for your convenience, the page number designators have been linked to the appropriate location. motorola and the stylized m logo are registered trademarks of motorola, inc. digitaldna is a trademark of motorola, inc. ? motorola, inc., 2002
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 4 motorola revision history non-disclosure agreement required revision history date revision level description page number(s) september, 2002 n/a initial release n/a
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola list of sections 5 non-disclosure agreement required data sheet ? mc68hc908qy4 list of sections section 1. general description . . . . . . . . . . . . . . . . . . . . 25 section 2. memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 section 3. random-access memory (ram) . . . . . . . . . . 43 section 4. flash memory (flash) . . . . . . . . . . . . . . . . 45 section 5. configuration register (config) . . . . . . . . . 55 section 6. central processor unit (cpu) . . . . . . . . . . . . 59 section 7. system integration module (sim) . . . . . . . . . 75 section 8. oscillator module (osc) . . . . . . . . . . . . . . . . 101 section 9. monitor rom (mon) . . . . . . . . . . . . . . . . . . . 113 section 10. timer interface module (tim) . . . . . . . . . . . 129 section 11. analog-to-digital converter (adc) . . . . . . 151 section 12. input/output (i/o) ports . . . . . . . . . . . . . . . 161 section 13. external interrupt (irq) . . . . . . . . . . . . . . . 171 section 14. keyboard interrupt module (kbi). . . . . . . . 177 section 15. computer operating properly (cop) . . . . 189
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 6 list of sections motorola list of sections non-disclosure agreement required section 16. low-voltage inhibit (lvi) . . . . . . . . . . . . . . 195 section 17. break module (break) . . . . . . . . . . . . . . . 201 section 18. electrical specifications . . . . . . . . . . . . . . . 211 section 19. mechanical specifications . . . . . . . . . . . . . 223 section 20. ordering information . . . . . . . . . . . . . . . . . 227
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola table of contents 7 non-disclosure agreement required data sheet ? mc68hc908qy4 table of contents section 1. general description 1.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 1.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 1.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 1.4 mcu block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5 pin assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 1.6 pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 1.7 pin function priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 section 2. memory 2.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 2.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 2.3 unimplemented memory locations . . . . . . . . . . . . . . . . . . . . .33 2.4 reserved memory locations . . . . . . . . . . . . . . . . . . . . . . . . . .35 2.5 input/output (i/o) section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 section 3. random-access memory (ram) 3.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 3.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 3.3 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 8 table of contents motorola table of contents non-disclosure agreement required section 4. flash memory (flash) 4.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 4.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 4.3 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4 flash control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 4.5 flash page erase operation . . . . . . . . . . . . . . . . . . . . . . . . .48 4.6 flash mass erase operation . . . . . . . . . . . . . . . . . . . . . . . . .49 4.7 flash program operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .49 4.8 flash protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 4.9 flash block protect register . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.10 wait mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 4.11 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 section 5. configuration register (config) 5.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 5.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 5.3 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 section 6. central processor unit (cpu) 6.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 6.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 6.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 6.4 cpu registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.1 accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 6.4.2 index register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4.3 stack pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4.4 program counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.4.5 condition code register . . . . . . . . . . . . . . . . . . . . . . . . . . .63
table of contents mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola table of contents 9 non-disclosure agreement required 6.5 arithmetic/logic unit (alu) . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.6 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 6.6.1 wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.6.2 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.7 cpu during break interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.8 instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 6.9 opcode map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 section 7. system integration module (sim) 7.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 7.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 7.3 rst and irq pins initialization . . . . . . . . . . . . . . . . . . . . . . . .79 7.4 sim bus clock control and generation . . . . . . . . . . . . . . . . . .79 7.4.1 bus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 7.4.2 clock start-up from por . . . . . . . . . . . . . . . . . . . . . . . . . . .79 7.4.3 clocks in stop mode and wait mode . . . . . . . . . . . . . . . . . . 80 7.5 reset and system initialization. . . . . . . . . . . . . . . . . . . . . . . . .80 7.5.1 external pin reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 7.5.2 active resets from internal sources . . . . . . . . . . . . . . . . . .81 7.5.2.1 power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 7.5.2.2 computer operating properly (cop) reset. . . . . . . . . . .83 7.5.2.3 illegal opcode reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.5.2.4 illegal address reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.5.2.5 low-voltage inhibit (lvi) reset . . . . . . . . . . . . . . . . . . . .84 7.6 sim counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 7.6.1 sim counter during power-on reset . . . . . . . . . . . . . . . . .85 7.6.2 sim counter during stop mode recovery . . . . . . . . . . . . . .85 7.6.3 sim counter and reset states. . . . . . . . . . . . . . . . . . . . . . .85 7.7 exception control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.7.1 interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 7.7.1.1 hardware interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 7.7.1.2 swi instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 10 table of contents motorola table of contents non-disclosure agreement required 7.7.2 interrupt status registers. . . . . . . . . . . . . . . . . . . . . . . . . . .90 7.7.2.1 interrupt status register 1 . . . . . . . . . . . . . . . . . . . . . . . .91 7.7.2.2 interrupt status register 2 . . . . . . . . . . . . . . . . . . . . . . . .91 7.7.2.3 interrupt status register 3 . . . . . . . . . . . . . . . . . . . . . . . .92 7.7.3 reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.7.4 break interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.7.5 status flag protection in break mode . . . . . . . . . . . . . . . . .93 7.8 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 7.8.1 wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 7.8.2 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 7.9 sim registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 7.9.1 sim reset status register . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.9.2 break flag control register . . . . . . . . . . . . . . . . . . . . . . . . .98 7.9.3 break status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 section 8. oscillator module (osc) 8.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 8.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 8.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 8.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 8.4.1 internal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1.1 internal oscillator trimming . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1.2 internal to external clock switching. . . . . . . . . . . . . . . .104 8.4.2 external oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.4.3 xtal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.4.4 rc oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8.5 oscillator module signals . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 8.5.1 crystal amplifier input pin (osc1) . . . . . . . . . . . . . . . . . . .107 8.5.2 crystal amplifier output pin (osc2/pta4/busclkx4) . . . . . . . . . . . . . . . . . . . . . .108 8.5.3 oscillator enable signal (simoscen). . . . . . . . . . . . . . . . 108 8.5.4 xtal oscillator clock (xtalclk) . . . . . . . . . . . . . . . . . . .108 8.5.5 rc oscillator clock (rcclk). . . . . . . . . . . . . . . . . . . . . . .109 8.5.6 internal oscillator clock (intclk) . . . . . . . . . . . . . . . . . . .109
table of contents mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola table of contents 11 non-disclosure agreement required 8.5.7 oscillator out 2 (busclkx4) . . . . . . . . . . . . . . . . . . . . . . 109 8.5.8 oscillator out (busclkx2) . . . . . . . . . . . . . . . . . . . . . . . . 109 8.6 low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 8.6.1 wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.6.2 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.7 oscillator during break mode. . . . . . . . . . . . . . . . . . . . . . . . . 110 8.8 config2 options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.9 input/output (i/o) registers . . . . . . . . . . . . . . . . . . . . . . . . . .111 8.9.1 oscillator status register. . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.9.2 oscillator trim register (osctrim) . . . . . . . . . . . . . . . . . 112 section 9. monitor rom (mon) 9.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 9.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 9.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 9.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 9.4.1 forced monitor mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 9.4.2 v tst monitor mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 9.4.3 data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 9.4.4 break signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 9.4.5 baud rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 9.4.6 commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 9.5 security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 section 10. timer interface module (tim) 10.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 10.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 10.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 10.4 pin name conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 12 table of contents motorola table of contents non-disclosure agreement required 10.5 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 10.5.1 tim counter prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.2 input capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.3 output compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.3.1 unbuffered output compare . . . . . . . . . . . . . . . . . . . . .134 10.5.3.2 buffered output compare . . . . . . . . . . . . . . . . . . . . . . .135 10.5.4 pulse width modulation (pwm) . . . . . . . . . . . . . . . . . . . . .135 10.5.4.1 unbuffered pwm signal generation . . . . . . . . . . . . . . .136 10.5.4.2 buffered pwm signal generation . . . . . . . . . . . . . . . . .137 10.5.4.3 pwm initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 10.6 interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 10.7 wait mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 10.8 tim during break interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .140 10.9 input/output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 10.10 input/output registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 10.10.1 tim status and control register . . . . . . . . . . . . . . . . . . . .141 10.10.2 tim counter registers . . . . . . . . . . . . . . . . . . . . . . . . . . .143 10.10.3 tim counter modulo registers . . . . . . . . . . . . . . . . . . . . .144 10.10.4 tim channel status and control registers . . . . . . . . . . . .145 10.10.5 tim channel registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .148 section 11. analog-to-digital converter (adc) 11.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151 11.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151 11.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152 11.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152 11.4.1 adc port i/o pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 11.4.2 voltage conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 11.4.3 conversion time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 11.4.4 continuous conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .155 11.4.5 accuracy and precision . . . . . . . . . . . . . . . . . . . . . . . . . . .155 11.5 interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
table of contents mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola table of contents 13 non-disclosure agreement required 11.6 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 11.6.1 wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 11.6.2 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 11.7 input/output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 11.8 input/output registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 11.8.1 adc status and control register. . . . . . . . . . . . . . . . . . . . 157 11.8.2 adc data register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 11.8.3 adc input clock register . . . . . . . . . . . . . . . . . . . . . . . . . 159 section 12. input/output (i/o) ports 12.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 12.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 12.3 port a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162 12.3.1 port a data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 12.3.2 data direction register a. . . . . . . . . . . . . . . . . . . . . . . . . .164 12.3.3 port a input pullup enable register. . . . . . . . . . . . . . . . . .166 12.4 port b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 12.4.1 port b data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 12.4.2 data direction register b. . . . . . . . . . . . . . . . . . . . . . . . . .168 12.4.3 port b input pullup enable register. . . . . . . . . . . . . . . . . .169 section 13. external interrupt (irq) 13.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 13.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 13.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 13.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 13.5 irq pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 13.6 irq module during break interrupts . . . . . . . . . . . . . . . . . . .175 13.7 irq status and control register . . . . . . . . . . . . . . . . . . . . . .175
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 14 table of contents motorola table of contents non-disclosure agreement required section 14. keyboard interrupt module (kbi) 14.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 14.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 14.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 14.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179 14.4.1 keyboard initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 14.4.2 keyboard status and control register. . . . . . . . . . . . . . . .182 14.4.3 keyboard interrupt enable register . . . . . . . . . . . . . . . . . .184 14.4.4 auto wake-up interrupt request . . . . . . . . . . . . . . . . . . . .185 14.5 wait mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 14.6 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 14.7 keyboard module during break interrupts . . . . . . . . . . . . . . .187 section 15. computer operating properly (cop) 15.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 15.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 15.3 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 15.4 i/o signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.1 busclkx4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.2 copctl write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.3 power-on reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.4 internal reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 15.4.5 reset vector fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 15.4.6 copd (cop disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.7 coprs (cop rate select) . . . . . . . . . . . . . . . . . . . . . . . .192 15.5 cop control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.6 interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.7 monitor mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.8 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.8.1 wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.8.2 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.9 cop module during break mode . . . . . . . . . . . . . . . . . . . . . .193
table of contents mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola table of contents 15 non-disclosure agreement required section 16. low-voltage inhibit (lvi) 16.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 16.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 16.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 16.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 16.4.1 polled lvi operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 16.4.2 forced reset operation . . . . . . . . . . . . . . . . . . . . . . . . . . .198 16.4.3 voltage hysteresis protection . . . . . . . . . . . . . . . . . . . . . .198 16.4.4 lvi trip selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 16.5 lvi status register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 16.6 lvi interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.7 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.7.1 wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.7.2 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 section 17. break module (break) 17.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 17.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 17.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 17.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 17.4.1 flag protection during break interrupts . . . . . . . . . . . . . . .204 17.4.2 cpu during break interrupts . . . . . . . . . . . . . . . . . . . . . . .204 17.4.3 tim during break interrupts . . . . . . . . . . . . . . . . . . . . . . . .204 17.4.4 cop during break interrupts . . . . . . . . . . . . . . . . . . . . . . .204 17.5 break module registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205 17.5.1 break status and control register . . . . . . . . . . . . . . . . . . .205 17.5.2 break address registers . . . . . . . . . . . . . . . . . . . . . . . . . .206 17.5.3 break auxiliary register . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 17.5.4 break status register . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 17.5.5 break flag control register . . . . . . . . . . . . . . . . . . . . . . .209 17.6 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 16 table of contents motorola table of contents non-disclosure agreement required section 18. electrical specifications 18.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 18.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 18.3 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . .212 18.4 functional operating range. . . . . . . . . . . . . . . . . . . . . . . . . .213 18.5 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 18.6 5-v dc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 214 18.7 5-v control timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 18.8 5-v oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 216 18.9 3-v dc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 217 18.10 3-v control timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 18.11 3-v oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 219 18.12 typical supply currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220 18.13 analog-to-digital converter characteristics . . . . . . . . . . . . . .221 18.14 memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222 section 19. mechanical specifications 19.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223 19.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223 19.3 8-pin plastic dual in-line package (case #626) . . . . . . . . . .224 19.4 8-pin small outline integrated circuit package (case #968) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224 19.5 16-pin plastic dual in-line package (case #648d) . . . . . . . .225 19.6 16-pin small outline integrated circuit package (case #751g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 19.7 16-pin thin shrink small outline package (case #948f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
table of contents mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola table of contents 17 non-disclosure agreement required section 20. ordering information 20.1 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 20.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 20.3 mc order numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 18 table of contents motorola table of contents non-disclosure agreement required
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola list of figures 19 non-disclosure agreement required data sheet ? mc68hc908qy4 list of figures figure title page 1-1 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1-2 mcu pin assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2-1 memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 2-2 control, status, and data registers . . . . . . . . . . . . . . . . . . . . .36 4-1 flash control register (flcr) . . . . . . . . . . . . . . . . . . . . . . . 47 4-2 flash programming flowchart . . . . . . . . . . . . . . . . . . . . . . . .52 4-3 flash block protect register (flbpr). . . . . . . . . . . . . . . . . .53 4-4 flash block protect start address . . . . . . . . . . . . . . . . . . . . .53 5-1 configuration register 2 (config2) . . . . . . . . . . . . . . . . . . . .56 5-2 configuration register 1 (config1) . . . . . . . . . . . . . . . . . . . .57 6-1 cpu registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6-2 accumulator (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 6-3 index register (h:x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6-4 stack pointer (sp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 6-5 program counter (pc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6-6 condition code register (ccr) . . . . . . . . . . . . . . . . . . . . . . . .63 7-1 sim block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 7-2 sim i/o register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . .78 7-3 sim clock signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7-4 external reset timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 7-5 internal reset timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 7-6 sources of internal reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 7-7 por recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7-8 interrupt processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 7-9 interrupt entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 20 list of figures motorola list of figures non-disclosure agreement required figure title page 7-10 interrupt recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 7-11 interrupt recognition example . . . . . . . . . . . . . . . . . . . . . . . . .89 7-12 interrupt status register 1 (int1). . . . . . . . . . . . . . . . . . . . . . .91 7-13 interrupt status register 2 (int2). . . . . . . . . . . . . . . . . . . . . . .91 7-14 interrupt status register 3 (int3). . . . . . . . . . . . . . . . . . . . . . .92 7-15 wait mode entry timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 7-16 wait recovery from interrupt or break . . . . . . . . . . . . . . . . . . .94 7-17 wait recovery from internal reset. . . . . . . . . . . . . . . . . . . . . .94 7-18 stop mode entry timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 7-19 stop mode recovery from interrupt . . . . . . . . . . . . . . . . . . . . .96 7-20 sim reset status register (srsr) . . . . . . . . . . . . . . . . . . . . .96 7-21 break flag control register (bfcr) . . . . . . . . . . . . . . . . . . . . 98 7-22 break status register (bsr) . . . . . . . . . . . . . . . . . . . . . . . . . .99 8-1 xtal oscillator external connections . . . . . . . . . . . . . . . . . .106 8-2 rc oscillator external connections . . . . . . . . . . . . . . . . . . . . 107 8-3 oscillator status register (oscstat). . . . . . . . . . . . . . . . . . 111 8-4 oscillator trim register (osctrim) . . . . . . . . . . . . . . . . . . . 112 9-1 monitor mode circuit (external clock, no high voltage) . . . .116 9-2 monitor mode circuit (internal clock, no high voltage) . . . . .116 9-3 monitor mode circuit (external clock, with high voltage) . . .117 9-4 low-voltage monitor mode entry flowchart. . . . . . . . . . . . . .119 9-5 monitor data format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 9-6 break transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 9-7 read transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 9-8 write transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 9-9 stack pointer at monitor mode entry . . . . . . . . . . . . . . . . . . .127 9-10 monitor mode entry timing. . . . . . . . . . . . . . . . . . . . . . . . . . .128 10-1 tim block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 10-2 tim i/o register summary. . . . . . . . . . . . . . . . . . . . . . . . . . .132 10-3 pwm period and pulse width . . . . . . . . . . . . . . . . . . . . . . . .136 10-4 tim status and control register (tsc) . . . . . . . . . . . . . . . . .141 10-5 tim counter registers (tcnth:tcntl) . . . . . . . . . . . . . . . .144 10-6 tim counter modulo registers (tmodh:tmodl). . . . . . . . .144 10-7 tim channel status and control registers (tsc0:tsc1) . . .145
list of figures mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola list of figures 21 non-disclosure agreement required figure title page 10-8 chxmax latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148 10-9 tim channel registers (tch0h/l:tch1h/l). . . . . . . . . . . . .149 11-1 adc i/o register summary . . . . . . . . . . . . . . . . . . . . . . . . . .152 11-2 adc block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 11-3 adc status and control register (adscr) . . . . . . . . . . . . . .157 11-4 adc data register (adr) . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 11-5 adc input clock register (adiclk) . . . . . . . . . . . . . . . . . . . 159 12-1 i/o port register summary. . . . . . . . . . . . . . . . . . . . . . . . . . .162 12-2 port a data register (pta) . . . . . . . . . . . . . . . . . . . . . . . . . .163 12-3 data direction register a (ddra) . . . . . . . . . . . . . . . . . . . . . 164 12-4 port a i/o circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 12-5 port a input pullup enable register (ptapue) . . . . . . . . . . .166 12-6 port b data register (ptb) . . . . . . . . . . . . . . . . . . . . . . . . . .167 12-7 data direction register b (ddrb) . . . . . . . . . . . . . . . . . . . . . 168 12-8 port b i/o circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168 12-9 port b input pullup enable register (ptbpue) . . . . . . . . . . .169 13-1 irq module block diagram . . . . . . . . . . . . . . . . . . . . . . . . . .172 13-2 irq i/o register summary. . . . . . . . . . . . . . . . . . . . . . . . . . .173 13-3 irq status and control register (intscr) . . . . . . . . . . . . . .176 14-1 kbi i/o register summary . . . . . . . . . . . . . . . . . . . . . . . . . . .178 14-2 keyboard interrupt block diagram . . . . . . . . . . . . . . . . . . . . .179 14-3 keyboard status and control register (kbscr) . . . . . . . . . .183 14-4 keyboard interrupt enable register (kbier) . . . . . . . . . . . . .184 14-5 auto wake-up interrupt request generation logic . . . . . . . .185 15-1 cop block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 15-2 cop control register (copctl) . . . . . . . . . . . . . . . . . . . . . . 192 16-1 lvi module block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .196 16-2 lvi status register (lvisr) . . . . . . . . . . . . . . . . . . . . . . . . . .199 17-1 break module block diagram . . . . . . . . . . . . . . . . . . . . . . . . .203 17-2 break i/o register summary . . . . . . . . . . . . . . . . . . . . . . . . .203
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 22 list of figures motorola list of figures non-disclosure agreement required figure title page 17-3 break status and control register (brkscr). . . . . . . . . . . .205 17-4 break address register high (brkh) . . . . . . . . . . . . . . . . . .206 17-5 break address register low (brkl) . . . . . . . . . . . . . . . . . . .206 17-6 break auxiliary register (brkar) . . . . . . . . . . . . . . . . . . . . .207 17-7 break status register (bsr) . . . . . . . . . . . . . . . . . . . . . . . . .208 17-8 break flag control register (bfcr) . . . . . . . . . . . . . . . . . . .209 18-1 rc versus frequency (5 volts @ 25 c) . . . . . . . . . . . . . . . . . 216 18-2 rc versus frequency (3 volts @ 25 c) . . . . . . . . . . . . . . . . . 219 18-3 typical operating i dd , with all modules turned on (25 c) . . 220 18-4 typical wait mode i dd , with adc turned on (25 c) . . . . . . . 220
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola list of tables 23 non-disclosure agreement required data sheet ? mc68hc908qy4 list of tables table title page 1-1 summary of device variations . . . . . . . . . . . . . . . . . . . . . . . . .25 1-2 pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 1-3 function priority in shared pins . . . . . . . . . . . . . . . . . . . . . . . .32 2-1 vector addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 4-1 examples of protect start address. . . . . . . . . . . . . . . . . . . . . .54 6-1 instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 6-2 opcode map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 7-1 signal name conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 7-2 pin bit set timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 7-3 interrupt sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 7-4 sim registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 8-1 osc2 pin function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 8-2 oscillator modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9-1 monitor mode signal requirements and options . . . . . . . . . .117 9-2 mode difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 9-3 monitor baud rate selection . . . . . . . . . . . . . . . . . . . . . . . . .121 9-4 read (read memory) command . . . . . . . . . . . . . . . . . . . . .123 9-5 write (write memory) command. . . . . . . . . . . . . . . . . . . . .124 9-6 iread (indexed read) command . . . . . . . . . . . . . . . . . . . . .124 9-7 iwrite (indexed write) command . . . . . . . . . . . . . . . . . . . .125 9-8 readsp (read stack pointer) command . . . . . . . . . . . . . . .126 9-9 run (run user program) command . . . . . . . . . . . . . . . . . . .126
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 24 list of tables motorola list of tables non-disclosure agreement required table title page 10-1 pin name conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 10-2 prescaler selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 10-3 mode, edge, and level selection . . . . . . . . . . . . . . . . . . . . . .147 11-1 mux channel select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 11-2 adc clock divide ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 12-1 port a pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 12-2 port b pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 12-3 port b pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 16-1 lviout bit indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 20-1 mc order numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola general description 25 non-disclosure agreement required data sheet ? mc68hc908qy4 section 1. general description 1.1 contents 1.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 1.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 1.4 mcu block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5 pin assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 1.6 pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 1.7 pin function priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 1.2 introduction the mc68hc908qy4 is a member of the low-cost, high-performance m68hc08 family of 8-bit microcontroller units (mcus). the m68hc08 family is a complex instruction set computer (cisc) with a von neumann architecture. all mcus in the family use the enhanced m68hc08 central processor unit (cpu08) and are available with a variety of modules, memory sizes and types, and package types. 0.4 table 1-1. summary of device variations device flash memory size analog-to-digital converter pin count mc68hc908qt1 1536 bytes ? 8 pins mc68hc908qt2 1536 bytes 4 ch, 8 bit 8 pins mc68hc908qt4 4096 bytes 4 ch, 8 bit 8 pins mc68hc908qy1 1536 bytes ? 16 pins mc68hc908qy2 1536 bytes 4 ch, 8 bit 16 pins mc68hc908qy4 4096 bytes 4 ch, 8 bit 16 pins
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 26 general description motorola general description non-disclosure agreement required 1.3 features features include:  high-performance m68hc08 cpu core  fully upward-compatible object code with m68hc05 family  5-v and 3-v operating voltages (v dd )  8-mhz internal bus operation at 5 v, 4-mhz at 3 v  trimmable internal oscillator ? 3.2 mhz internal bus operation ? 8-bit trim capability ? 25% untrimmed ? 5% trimmed  auto wake-up from stop capability  configuration (config) register for mcu configuration options, including: ? low-voltage inhibit (lvi) trip point  in-system flash programming  flash security (1)  on-chip in-application programmable flash memory (with internal program/erase voltage generation) ? mc68hc908qy4 and mc68hc908qt4 ? 4096 bytes ? mc68hc908qy2, mc68hc908qy1, mc68hc908qt2, and mc68hc908qt1 ? 1536 bytes  128 bytes of on-chip random-access memory (ram)  2-channel, 16-bit timer interface module (tim)  4-channel, 8-bit analog-to-digital converter (adc) on mc68hc908qy2, mc68hc908qy4, mc68hc908qt2, and mc68hc908qt4 1. no security feature is absolutely secure. however, motorola ? s strategy is to make reading or copying the flash difficult for unauthorized users.
general description features mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola general description 27 non-disclosure agreement required  5 or 13 bidirectional input/output (i/o) lines and one input only: ? six shared with keyboard interrupt function and adc ? two shared with timer channels ? one shared with external interrupt (irq) ? eight extra i/o lines on 16-pin package only ? high current sink/source capability on all port pins ? selectable pullups on all ports, selectable on an individual bit basis ? three-state ability on all port pins  6-bit keyboard interrupt with wakeup feature (kbi)  low-voltage inhibit (lvi) module features: ? software selectable trip point in config register  system protection features: ? computer operating properly (cop) watchdog ? low-voltage detection with reset ? illegal opcode detection with reset ? illegal address detection with reset  external asynchronous interrupt pin with internal pullup (irq ) shared with general-purpose input pin  master asynchronous reset pin (rst ) shared with general-purpose input/output (i/o) pin  power-on reset  internal pullups on irq and r st to reduce external components  memory mapped i/o registers  power saving stop and wait modes  mc68hc908qy4, mc68hc908qy2, and mc68hc908qy1 are available in these packages: ? 16-pin plastic dual in-line package (pdip) ? 16-pin small outline integrated circuit (soic) package ? 16-pin thin shrink small outline package (tssop)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 28 general description motorola general description non-disclosure agreement required  mc68hc908qt4, mc68hc908qt2, and mc68hc908qt1 are available in these packages: ? 8-pin pdip ? 8-pin soic features of the cpu08 include the following:  enhanced hc05 programming model  extensive loop control functions  16 addressing modes (eight more than the hc05)  16-bit index register and stack pointer  memory-to-memory data transfers  fast 8 8 multiply instruction  fast 16/8 divide instruction  binary-coded decimal (bcd) instructions  optimization for controller applications  efficient c language support 1.4 mcu block diagram figure 1-1 shows the structure of the mc68hc908qy4. 1.5 pin assignments the mc68hc908qt4, mc68hc908qt2, and mc68hc908qt1 are available in 8-pin packages and the mc68hc908qy4, mc68hc908qy2, and mc68hc908qy1 in 16-pin packages. figure 1-2 shows the pin assignment for these packages.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola general description 29 general description pin assignments non-disclosure agreement required figure 1-1. block diagram mc68hc908qy4 and mc68hc908qt4: 4096 bytes mc68hc908qy2, mc68hc908qy1, mc68hc908qt2, and mc68hc908qt1: 1536 bytes user flash rst , irq : pins have internal (about 30k ohms) pull up pta[0:5]: high current sink and source capability pta[0:5]: pins have programmable keyboard interrupt and pull up ptb[0:7]: not available on 8-pin devices ? mc68hc908qt1, mc68hc908qt2, and mc68hc908qt4 condition code register v 1 1 i n z c h index register cpu control stack pointer alu 68hc08 cpu accumulator program counter cpu registers 128 bytes ram v dd v ss 16-bit timer module cop module power-on reset module break module single interrupt module system integration module clock generator ptb ddrb monitor rom 8-bit adc pta ddra ptb[0:7] power supply pta0/ad0/tch0/kbi0 pta1/ad1/tch1/kbi1 pta2/irq /kbi2 pta3/rst /kbi3 pta4/osc2/ad2/kbi4 pta5/osc1/ad3/kbi5
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 30 general description motorola general description non-disclosure agreement required figure 1-2. mcu pin assignments 1 2 3 4 5 6 7 8 ptb0 ptb2 ptb3 ptb4 v ss ptb6 ptb7 ptb1 8-pin assignment mc68hc908qt1 pdip/soic 16-pin assignment mc68hc908qy1 pdip/soic v ss v dd pta5/osc1/kbi5 1 2 3 4 8 7 6 5 pta4/osc2/kbi4 pta3/rst /kbi3 pta1/tch1/kbi1 pta0/tch0/kbi0 pta2/irq /kbi2 v dd pta1/tch1/kbi1 ptb5 pta2/irq /kbi2 pta0/tch0/kbi0 pta5/osc1/kbi5 pta4/osc2/kbi4 pta3/rst /kbi3 1 2 3 4 5 6 7 16 15 14 13 12 11 10 8 ptb2 ptb3 ptb4 ptb6 ptb7 16-pin assignment mc68hc908qy1 tssop pta1/tch1/kbi1 ptb5 pta2/irq /kbi2 pta5/osc1/kbi5 pta4/osc2/kbi4 pta3/rst /kbi3 pta0/tch0/kbi0 ptb1 ptb0 v ss v dd 8-pin assignment mc68hc908qt2 and mc68hc908qt4 pdip/soic v ss v dd pta5/osc1/ad3/kbi5 1 2 3 4 8 7 6 5 pta4/osc2/ad2/kbi4 pta3/rst /kbi3 pta1/ad1/tch1/kbi1 pta0/ad0/tch0/kbi0 pta2/irq /kbi2 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 ptb0 ptb2 ptb3 ptb4 v ss ptb6 ptb7 ptb1 16-pin assignment mc68hc908qy2 and mc68hc908qy4 pdip/soic v dd pta1/ad1/tch1/kbi1 ptb5 pta2/irq /kbi2 pta0/ad0/tch0/kbi0 pta5/osc1/ad3/kbi5 pta4/osc2/ad2/kbi4 pta3/rst /kbi3 1 2 3 4 5 6 7 16 15 14 13 12 11 10 9 8 ptb2 ptb3 ptb4 ptb6 ptb7 16-pin assignment mc68hc908qy2 and mc68hc908qy4 tssop pta1/ad1/tch1/kbi1 ptb5 pta2/irq /kbi2 pta5/osc1/ad3/kbi5 pta4/osc2/ad2/kbi4 pta3/rst /kbi3 pta0/ad0/tch0/kbi0 ptb1 ptb0 v ss v dd 16 15 14 13 12 11 10 9 9
general description pin functions mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola general description 31 non-disclosure agreement required 1.6 pin functions table 1-2 provides a description of the pin functions. table 1-2. pin functions pin name description input/output v dd power supply power v ss power supply ground power pta0 pta0 ? general purpose i/o port input/output ad0 ? a/d channel 0 input input tch0 ? timer channel 0 i/o input/output kbi0 ? keyboard interrupt input 0 input pta1 pta1 ? general purpose i/o port input/output ad1 ? a/d channel 1 input input tch1 ? timer channel 1 i/o input/output kbi1 ? keyboard interrupt input 1 input pta2 pta2 ? general purpose input-only port input irq ? external interrupt with programmable pullup and schmitt trigger input input kbi2 ? keyboard interrupt input 2 input pta3 pta3 ? general purpose i/o port input/output rst ? reset input, active low with internal pullup and schmitt trigger input kbi3 ? keyboard interrupt input 3 input pta4 pta4 ? general purpose i/o port input/output osc2 ? xtal oscillator output (xtal option only) rc or internal oscillator output (osc2en = 1 in ptapue register) output output ad2 ? a/d channel 2 input input kbi4 ? keyboard interrupt input 4 input pta5 pta5 ? general purpose i/o port input/output osc1 ? xtal, rc, or external oscillator input input ad3 ? a/d channel 3 input input kbi5 ? keyboard interrupt input 5 input ptb[0:7] (1) 8 general-purpose i/o ports. input/output 1. the ptb pins are not available on the 8-pin packages.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 32 general description motorola general description non-disclosure agreement required 1.7 pin function priority table 1-3 is meant to resolve the priority if multiple functions are enabled on a single pin. note: upon reset all pins come up as input ports regardless of the priority table. table 1-3. function priority in shared pins pin name highest-to-lowest priority sequence pta[0] ad0 tch0 kbi[0] pta[0] pta[1] ad1 tch1 kbi[1] pta[1] pta[2] irq kbi[2] pta[2] pta[3] rst kbi[3] pta[3] pta[4] osc2 ad2 kbi[4] pta[4] pta[5] osc1 ad3 kbi[5] pta[5]
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola memory 33 non-disclosure agreement required data sheet ? mc68hc908qy4 section 2. memory 2.1 contents 2.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 2.3 unimplemented memory locations . . . . . . . . . . . . . . . . . . . . .33 2.4 reserved memory locations . . . . . . . . . . . . . . . . . . . . . . . . . .35 2.5 input/output (i/o) section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 2.2 introduction the central processor unit (cpu08) can address 64 kbytes of memory space. the memory map, shown in figure 2-1 , includes:  4096 bytes of user flash for mc68hc908qt4 and mc68hc908qy4  1536 bytes of user flash for mc68hc908qt2, mc68hc908qt1, mc68hc908qy2, and mc68hc908qy1  128 bytes of random access memory (ram)  48 bytes of user-defined vectors, located in flash  416 bytes of monitor read-only memory (rom)  1536 bytes of flash program and erase routines, located in rom 2.3 unimplemented memory locations accessing a reserved location can have unpredictable effects on mcu operation. in figure 2-1 and in register figures in this document, unimplemented locations are shaded.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 34 memory motorola memory non-disclosure agreement required $0000 $003f i/o registers 64 bytes $0040 $007f reserved 64 bytes $0080 $00ff ram 128 bytes $0100 $27ff unimplemented 9984 bytes unimplemented 9984 bytes $0100 $27ff $2800 $2dff auxiliary rom 1536 bytes auxiliary rom 1536 bytes $2800 $2dff $2e00 $edff unimplemented 49152 bytes unimplemented 51712 bytes $2e00 $f7ff $ee00 $fdff flash memory mc68hc908qt4 and mc68hc908qy4 4096 bytes flash memory 1536 bytes $f800 $fdff $fe00 break status register (bsr) mc68hc908qt1, mc68hc908qt2, mc68hc908qy1, and mc68hc908qy2 memory map $fe01 reset status register (srsr) $fe02 break auxiliary register (brkar) $fe03 break flag control register (bfcr) $fe04 interrupt status register 1 (int1) $fe05 interrupt status register 2 (int2) $fe06 interrupt status register 3 (int3) $fe07 reserved for flash test control register (fltcr) $fe08 flash control register (flcr) $fe09 break address high register (brkh) $fe0a break address low register (brkl) $fe0b break status and control register (brkscr) $fe0c lvisr $fe0d $fe0f reserved for flash test 3 bytes $fe10 $ffaf monitor rom 416 bytes $ffb0 $ffbd flash 14 bytes $ffbe flash block protect register (flbpr) $ffbf reserved flash $ffc0 internal oscillator trim value $ffc1 reserved flash $ffc2 $ffcf flash 14 bytes $ffd0 $ffff user vectors 48 bytes figure 2-1. memory map
memory reserved memory locations mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola memory 35 non-disclosure agreement required 2.4 reserved memory locations accessing a reserved location can have unpredictable effects on mcu operation. in figure 2-1 and in register figures in this document, reserved locations are marked with the word reserved or with the letter r. 2.5 input/output (i/o) section addresses $0000 ? $003f, shown in figure 2-2 , contain most of the control, status, and data registers. additional i/o registers have these addresses:  $fe00 ? break status register, bsr  $fe01 ? reset status register, srsr  $fe02 ? break auxiliary register, brkar  $fe03 ? break flag control register, bfcr  $fe04 ? interrupt status register 1, int1  $fe05 ? interrupt status register 2, int2  $fe06 ? interrupt status register 3, int3  $fe07 ? reserved  $fe08 ? flash control register, flcr  $fe09 ? break address register high, brkh  $fe0a ? break address register low, brkl  $fe0b ? break status and control register, brkscr  $fe0c ? lvi status register, lvisr  $fe0d ? reserved  $ffbe ? flash block protect register, flbpr  $ffc0 ? internal osc trim value ? optional  $ffff ? cop control register, copctl
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 36 memory motorola memory non-disclosure agreement required addr.register name bit 7654321bit 0 $0000 port a data register (pta) see page 163. read: 0 awul pta5 pta4 pta3 pta2 pta1 pta0 write: reset:u0uuuuuu $0001 port b data register (ptb) see page 167. read: ptb7 ptb6 ptb5 ptb4 ptb3 ptb2 ptb1 ptb0 write: reset: unaffected by reset $0002 unimplemented $0003 unimplemented $0004 data direction register a (ddra) see page 164. read: 0 0 ddra5 ddra4 ddra3 0 ddra1 ddra0 write: reset:00000000 $0005 data direction register b (ddrb) see page 168. read: ddrb7 ddrb6 ddrb5 ddrb4 ddrb3 ddrb2 ddrb1 ddrb0 write: reset:00000000 $0006 $000a unimplemented unimplemented $000b port a input pullup enable register (ptapue) see page 166. read: osc2en 0 ptapue5 ptapue4 ptapue3 ptapue2 ptapue1 ptapue0 write: reset:00000000 $000c port b input pullup enable register (ptbpue) see page 169. read: ptbpue7 ptbpue6 ptbpue5 ptbpue4 ptbpue3 ptbpue2 ptbpue1 ptbpue0 write: reset:00000000 $000d $0019 unimplemented unimplemented = unimplemented r = reserved u = unaffected figure 2-2. control, status, and data registers (sheet 1 of 6)
memory input/output (i/o) section mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola memory 37 non-disclosure agreement required $001a keyboard status and control register (kbscr) see page 183. read: 0 0 0 0 keyf 0 imaskk modek write: ackk reset:00000000 $001b keyboard interrupt enable register (kbier) see page 184. read: 0 awuie kbie5 kbie4 kbie3 kbie2 kbie1 kbie0 write: reset:00000000 $001c unimplemented $001d irq status and control register (intscr) see page 176. read: 0 0 0 0 irqf1 0 imask1 mode1 write: ack1 reset:00000000 $001e configuration register 2 (config2) (1) see page 56. read: irqpud irqen r oscopt1 oscopt0 r r rsten write: reset:00000000 (2) 1. one-time writable register after each reset. 2. rsten reset to logic 0 by a power-on reset (por) only. $001f configuration register 1 (config1) (1) see page 57. read: coprs lvistop lvirstd lvipwrd lvi5or3 ssrec stop copd write: reset:00000 (2) 000 1. one-time writable register after each reset. 2. lvi5or3 reset to logic 0 by a power-on reset (por) only. $0020 tim status and control register (tsc) see page 141. read: tof toie tstop 00 ps2 ps1 ps0 write: 0 trst reset:00100000 $0021 tim counter register high (tcnth) see page 144. read: bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 write: reset:00000000 $0022 tim counter register low (tcntl) see page 144. read: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 write: reset:00000000 addr.register name bit 7654321bit 0 = unimplemented r = reserved u = unaffected figure 2-2. control, status, and data registers (sheet 2 of 6)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 38 memory motorola memory non-disclosure agreement required $0023 tim counter modulo register high (tmodh) see page 144. read: bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 write: reset:11111111 $0024 tim counter modulo register low (tmodl) see page 144. read: bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0 write: reset:11111111 $0025 tim channel 0 status and control register (tsc0) see page 145. read: ch0f ch0ie ms0b ms0a els0b els0a tov0 ch0max write: 0 reset:00000000 $0026 tim channel 0 register high (tch0h) see page 149. read: bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 write: reset: indeterminate after reset $0027 tim channel 0 register low (tch0l) see page 149. read: bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0 write: reset: indeterminate after reset $0028 tim channel 1 status and control register (tsc1) see page 145. read: ch1f ch1ie 0 ms1a els1b els1a tov1 ch1max write: 0 reset:00000000 $0029 tim channel 1 register high (tch1h) see page 149. read: bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 write: reset: indeterminate after reset $002a tim channel 1 register low (tch1l) see page 149. read: bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0 write: reset: indeterminate after reset $002b $0035 unimplemented unimplemented addr.register name bit 7654321bit 0 = unimplemented r = reserved u = unaffected figure 2-2. control, status, and data registers (sheet 3 of 6)
memory input/output (i/o) section mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola memory 39 non-disclosure agreement required $0036 oscillator status register (oscstat) see page 111. read: rrrrrrecgon ecgst write: reset:00000000 $0037 unimplemented read: $0038 oscillator trim register (osctrim) see page 112. read: trim7 trim6 trim5 trim4 trim3 trim2 trim1 trim0 write: reset:10000000 $0039 $003b unimplemented unimplemented $003c adc status and control register (adscr) see page 157. read: coco aien adco ch4 ch3 ch2 ch1 ch0 write: reset:00011111 $003d unimplemented $003e adc data register (adr) see page 159. read: ad7 ad6 ad5 ad4 ad3 ad2 ad1 ad0 write: reset: indeterminate after reset $003f adc input clock register (adiclk) see page 159. read: adiv2 adiv1 adiv0 00000 write: reset:00000000 $fe00 break status register (bsr) see page 208. read: rrrrrr sbsw r write: see note 1 reset: 0 1. writing a logic 0 clears sbsw. $fe01 sim reset status register (srsr) see page 96. read: por pin cop ilop ilad modrst lvi 0 write: por:10000000 addr.register name bit 7654321bit 0 = unimplemented r = reserved u = unaffected figure 2-2. control, status, and data registers (sheet 4 of 6)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 40 memory motorola memory non-disclosure agreement required $fe02 break auxiliary register (brkar) see page 207. read: 0 0 00000 bdcop write: reset:00000000 $fe03 break flag control register (bfcr) see page 209. read: bcferrrrrrr write: reset: 0 $fe04 interrupt status register 1 (int1) see page 176. read: 0 if5 if4 if3 0 if1 0 0 write:rrrrrrrr reset:00000000 $fe05 interrupt status register 2 (int2) see page 176. read: if14 0 000000 write:rrrrrrrr reset:00000000 $fe06 interrupt status register 3 (int3) see page 176. read: 0 0 00000if15 write:rrrrrrrr reset:00000000 $fe07 reserved rrrrrrrr $fe08 flash control register (flcr) see page 47. read: 0 0 0 0 hven mass erase pgm write: reset:00000000 $fe09 break address high register (brkh) see page 206. read: bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 write: reset:00000000 $fe0a break address low register (brkl) see page 206. read: bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0 write: reset:00000000 $fe0b break status and control register (brkscr) see page 205. read: brke brka 000000 write: reset:00000000 addr.register name bit 7654321bit 0 = unimplemented r = reserved u = unaffected figure 2-2. control, status, and data registers (sheet 5 of 6)
memory input/output (i/o) section mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola memory 41 non-disclosure agreement required $fe0c lvi status register (lvisr) see page 199. read: lviout 0 00000r write: reset:00000000 $fe0d $fe0f reserved for flash test rrrrrrrr reserved for flash test rrrrrrrr $ffb0 $ffbd unimplemented unimplemented $ffbe flash block protect register (flbpr) see page 53. read: bpr7 bpr6 bpr5 bpr4 bpr3 bpr2 bpr1 0 write: reset:00000000 $ffbf unimplemented $ffc0 internal oscillator trim value (optional) read: trim7 trim6 trim5 trim4 trim3 trim2 trim1 trim0 write: reset:10000000 $ffc1 reserved rrrrrrrr $ffc2 $ffcf unimplemented unimplemented $ffff cop control register (copctl) see page 192. read: low byte of reset vector write: writing clears cop counter (any value) reset: unaffected by reset addr.register name bit 7654321bit 0 = unimplemented r = reserved u = unaffected figure 2-2. control, status, and data registers (sheet 6 of 6)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 42 memory motorola memory non-disclosure agreement required . table 2-1. vector addresses vector priority vector address vector lowest highest if15 $ffde adc conversion complete vector (high) $ffdf adc conversion complete vector (low) if14 $ffe0 keyboard vector (high) $ffe1 keyboard vector (low) if13 if6 ? not used if5 $fff2 tim overflow vector (high) $fff3 tim overflow vector (low) if4 $fff4 tim channel 1 vector (high) $fff5 tim channel 1 vector (low) if3 $fff6 tim channel 0 vector (high) $fff7 tim channel 0 vector (low) if2 ? not used if1 $fffa irq vector (high) $fffb irq vector (low) ? $fffc swi vector (high) $fffd swi vector (low) ? $fffe reset vector (high) $ffff reset vector (low)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola random-access memory (ram) 43 non-disclosure agreement required data sheet ? mc68hc908qy4 section 3. random-access memory (ram) 3.1 contents 3.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 3.3 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 introduction this section describes the 128 bytes of random-access memory (ram). 3.3 functional description addresses $0080 ? $00ff are ram locations. the location of the stack ram is programmable. the 16-bit stack pointer allows the stack to be anywhere in the 64-kbyte memory space. note: for correct operation, the stack pointer must point only to ram locations. before processing an interrupt, the central processor unit (cpu) uses five bytes of the stack to save the contents of the cpu registers. note: for m6805, m146805, and m68hc05 compatibility, the h register is not stacked. during a subroutine call, the cpu uses two bytes of the stack to store the return address. the stack pointer decrements during pushes and increments during pulls. note: be careful when using nested subroutines. the cpu may overwrite data in the ram during a subroutine or during the interrupt stacking operation.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 44 random-access memory (ram) motorola random-access memory (ram) non-disclosure agreement required
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola flash memory (flash) 45 non-disclosure agreement required data sheet ? mc68hc908qy4 section 4. flash memory (flash) 4.1 contents 4.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 4.3 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4 flash control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 4.5 flash page erase operation . . . . . . . . . . . . . . . . . . . . . . . . .48 4.6 flash mass erase operation . . . . . . . . . . . . . . . . . . . . . . . . .49 4.7 flash program operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .49 4.8 flash protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 4.9 flash block protect register . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.10 wait mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 4.11 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 4.2 introduction this section describes the operation of the embedded flash memory. the flash memory can be read, programmed, and erased from a single external supply. the program and erase operations are enabled through the use of an internal charge pump.  mc68hc908qy4 and mc68hc908qt4: 4096 bytes user flash from $ee00 ? $fdff  mc68hc908qy2, mc68hc908qt2, mc68hc908qy1 and mc68hc908qt1: 1536 bytes user flash from $f800 ? $fdff
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 46 flash memory (flash) motorola flash memory (flash) non-disclosure agreement required 4.3 functional description the flash memory consists of an array of 4096 or 1536 bytes with an additional 48 bytes for user vectors. the minimum size of flash memory that can be erased is 64 bytes; and the maximum size of flash memory that can be programmed in a program cycle is 32 bytes (a row). program and erase operations are facilitated through control bits in the flash control register (flcr). details for these operations appear later in this section. the address ranges for the user memory and vectors are:  $ee00 ? $fdff; user memory, 4096 bytes: mc68hc908qy4 and mc68hc908qt4  $f800 ? $fdff; user memory, 1536 bytes: mc68hc908qy2, mc68hc908qt2, mc68hc908qy1 and mc68hc908qt1  $ffd0 ? $ffff; user interrupt vectors, 48 bytes. note: an erased bit reads as logic 1 and a programmed bit reads as logic 0. a security feature prevents viewing of the flash contents. (1) 1. no security feature is absolutely secure. however, motorola ? s strategy is to make reading or copying the flash difficult for unauthorized users.
flash memory (flash) flash control register mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola flash memory (flash) 47 non-disclosure agreement required 4.4 flash control register the flash control register (flcr) controls flash program and erase operations. hven ? high voltage enable bit this read/write bit enables high voltage from the charge pump to the memory for either program or erase operation. it can only be set if either pgm =1 or erase =1 and the proper sequence for program or erase is followed. 1 = high voltage enabled to array and charge pump on 0 = high voltage disabled to array and charge pump off mass ? mass erase control bit this read/write bit configures the memory for mass erase operation. 1 = mass erase operation selected 0 = mass erase operation unselected erase ? erase control bit this read/write bit configures the memory for erase operation. erase is interlocked with the pgm bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = erase operation selected 0 = erase operation unselected pgm ? program control bit this read/write bit configures the memory for program operation. pgm is interlocked with the erase bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = program operation selected 0 = program operation unselected address: $fe08 bit 7654321bit 0 read: 0 0 0 0 hven mass erase pgm write: reset:00000000 figure 4-1. flash control register (flcr)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 48 flash memory (flash) motorola flash memory (flash) non-disclosure agreement required 4.5 flash page erase operation use the following procedure to erase a page of flash memory. a page consists of 64 consecutive bytes starting from addresses $xx00, $xx40, $xx80, or $xxc0. the 48-byte user interrupt vectors area also forms a page. any flash memory page can be erased alone. 1. set the erase bit and clear the mass bit in the flash control register. 2. read the flash block protect register. 3. write any data to any flash location within the address range of the block to be erased. 4. wait for a time, t nvs (minimum 10 s). 5. set the hven bit. 6. wait for a time, t erase (minimum 1 ms or 4 ms). 7. clear the erase bit. 8. wait for a time, t nvh (minimum 5 s). 9. clear the hven bit. 10. after time, t rcv (typical 1 s), the memory can be accessed in read mode again. note: programming and erasing of flash locations cannot be performed by code being executed from the flash memory. while these operations must be performed in the order as shown, but other unrelated operations may occur between the steps. in applications that need up to 10,000 program/erase cycles, use the 4 ms page erase specification to get improved long-term reliability. any application can use this 4 ms page erase specification. however, in applications where a flash location will be erased and reprogrammed less than 1000 times, and speed is important, use the 1 ms page erase specification to get a lower minimum erase time.
flash memory (flash) flash mass erase operation mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola flash memory (flash) 49 non-disclosure agreement required 4.6 flash mass erase operation use the following procedure to erase the entire flash memory to read as logic 1: 1. set both the erase bit and the mass bit in the flash control register. 2. read from the flash block protect register. 3. write any data to any flash address (1) within the flash memory address range. 4. wait for a time, t nvs (minimum 10 s). 5. set the hven bit. 6. wait for a time, t erase (minimum 4 ms). 7. clear the erase and mass bits. note: mass erase is disabled whenever any block is protected (flbpr does not equal $ff). 8. wait for a time, t nvh1 (minimum 100 s). 9. clear the hven bit. 10. after time, t rcv (typical 1 s), the memory can be accessed in read mode again. note: programming and erasing of flash locations cannot be performed by code being executed from the flash memory. while these operations must be performed in the order as shown, but other unrelated operations may occur between the steps. 4.7 flash program operation programming of the flash memory is done on a row basis. a row consists of 32 consecutive bytes starting from addresses $xx00, $xx20, $xx40, $xx60, $xx80, $xxa0, $xxc0, or $xxe0. use the following step-by-step procedure to program a row of flash memory figure 4-2 shows a flowchart of the programming algorithm. note: only bytes which are currently $ff may be programmed. 1. when in monitor mode, with security sequence failed (see 9.5 security ), write to the flash block protect register instead of any flash address.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 50 flash memory (flash) motorola flash memory (flash) non-disclosure agreement required 1. set the pgm bit. this configures the memory for program operation and enables the latching of address and data for programming. 2. read from the flash block protect register. 3. write any data to any flash location within the address range desired. 4. wait for a time, t nvs (minimum 10 s). 5. set the hven bit. 6. wait for a time, t pgs (minimum 5 s). 7. write data to the flash address being programmed (1) . 8. wait for time, t prog (minimum 30 s). 9. repeat step 7 and 8 until all desired bytes within the row are programmed. 10. clear the pgm bit (1) . 11. wait for time, t nvh (minimum 5 s). 12. clear the hven bit. 13. after time, t rcv (typical 1 s), the memory can be accessed in read mode again. note: the cop register at location $ffff should not be written between steps 5-12, when the hven bit is set. since this register is located at a valid flash address, unpredictable behavior may occur if this location is written while hven is set. this program sequence is repeated throughout the memory until all data is programmed. note: programming and erasing of flash locations cannot be performed by code being executed from the flash memory. while these operations must be performed in the order shown, other unrelated operations may occur between the steps. do not exceed t prog maximum, see 18.14 memory characteristics . 1. the time between each flash address change, or the time between the last flash address programmed to clearing pgm bit, must not exceed the maximum programming time, t prog maximum.
flash memory (flash) flash protection mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola flash memory (flash) 51 non-disclosure agreement required 4.8 flash protection due to the ability of the on-board charge pump to erase and program the flash memory in the target application, provision is made to protect blocks of memory from unintentional erase or program operations due to system malfunction. this protection is done by use of a flash block protect register (flbpr). the flbpr determines the range of the flash memory which is to be protected. the range of the protected area starts from a location defined by flbpr and ends to the bottom of the flash memory ($ffff). when the memory is protected, the hven bit cannot be set in either erase or program operations. note: in performing a program or erase operation, the flash block protect register must be read after setting the pgm or erase bit and before asserting the hven bit. when the flbpr is programmed with all 0 s, the entire memory is protected from being programmed and erased. when all the bits are erased (all 1 ? s), the entire memory is accessible for program and erase. when bits within the flbpr are programmed, they lock a block of memory. the address ranges are shown in 4.9 flash block protect register . once the flbpr is programmed with a value other than $ff, any erase or program of the flbpr or the protected block of flash memory is prohibited. mass erase is disabled whenever any block is protected (flbpr does not equal $ff). the flbpr itself can be erased or programmed only with an external voltage, v tst , present on the irq pin. this voltage also allows entry from reset into the monitor mode.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 52 flash memory (flash) motorola flash memory (flash) non-disclosure agreement required figure 4-2. flash programming flowchart set hven bit write any data to any flash address within the row address range desired wait for a time, t nvs set pgm bit wait for a time, t pgs write data to the flash address to be programmed wait for a time, t prog clear pgm bit wait for a time, t nvh clear hven bit wait for a time, t rcv completed programming this row? y n end of programming the time between each flash address change (step 6 to step 9), must not exceed the maximum programming time, t prog max. or the time between the last flash address programmed to clearing pgm bit (step 6 to step 9) notes: 1 3 4 5 6 7 8 10 11 12 13 algorithm for programming a row (32 bytes) of flash memory this row program algorithm assumes the row/s to be programmed are initially erased. 9 read the flash block protect register 2
flash memory (flash) flash block protect register mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola flash memory (flash) 53 non-disclosure agreement required 4.9 flash block protect register the flash block protect register is implemented as a byte within the flash memory, and therefore can only be written during a programming sequence of the flash memory. the value in this register determines the starting address of the protected range within the flash memory. bpr[7:0] ? flash protection register bits [7:0] these eight bits in flbpr represent bits [13:6] of a 16-bit memory address. bits [15:14] are logic 1s and bits [5:0] are logic 0s. the resultant 16-bit address is used for specifying the start address of the flash memory for block protection. the flash is protected from this start address to the end of flash memory, at $ffff. with this mechanism, the protect start address can be xx00, xx40, xx80, or xxc0 within the flash memory. see figure 4-4 and table 4-1 . figure 4-4. flash block protect start address address: $ffbe bit 7654321bit 0 read: bpr7 bpr6 bpr5 bpr4 bpr3 bpr2 bpr1 bpr0 write: reset:uuuuuuuu u = unaffected by reset. initial value from factory is 1. write to this register is by a programming sequence to the flash memory. figure 4-3. flash block protect register (flbpr) 0 0 0 0 0 1 1 flbpr value start address of 16-bit memory address flash block protect 0
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 54 flash memory (flash) motorola flash memory (flash) non-disclosure agreement required 4.10 wait mode putting the mcu into wait mode while the flash is in read mode does not affect the operation of the flash memory directly, but there will not be any memory activity since the cpu is inactive. the wait instruction should not be executed while performing a program or erase operation on the flash, or the operation will discontinue and the flash will be on standby mode. 4.11 stop mode putting the mcu into stop mode while the flash is in read mode does not affect the operation of the flash memory directly, but there will not be any memory activity since the cpu is inactive. the stop instruction should not be executed while performing a program or erase operation on the flash, or the operation will discontinue and the flash will be on standby mode note: standby mode is the power-saving mode of the flash module in which all internal control signals to the flash are inactive and the current consumption of the flash is at a minimum. table 4-1. examples of protect start address bpr[7:0] start of address of protect range $00 ? $b8 the entire flash memory is protected. $b9 ( 1011 1001 )$ee40 (11 10 1110 01 00 0000) $ba ( 1011 1010 )$ee80 (11 10 1110 10 00 0000) $bb ( 1011 1011 ) $eec0 (11 10 1110 11 00 0000) $bc ( 1011 1100 )$ef00 (11 10 1111 00 00 0000) and so on... $de ( 1101 1110 ) $f780 (11 11 0111 10 00 0000) $df ( 1101 1111 )$f7c0 (11 11 0111 11 00 0000) $fe ( 1111 1110 ) $ff80 (11 11 1111 10 00 0000) flbpr, osctrim, and vectors are protected $ff the entire flash memory is not protected.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola configuration register (config) 55 non-disclosure agreement required data sheet ? mc68hc908qy4 section 5. configuration register (config) 5.1 contents 5.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 5.3 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 introduction this section describes the configuration registers (config1 and config2). the configuration registers enable or disable the following options:  stop mode recovery time (32 busclkx4 cycles or 4096 busclkx4 cycles)  stop instruction  computer operating properly module (cop)  cop reset period (coprs): (2 13 ? 2 4 ) busclkx4 or (2 18 ? 2 4 ) busclkx4  low-voltage inhibit (lvi) enable and trip voltage selection  osc option selection  irq pin  rst pin  auto wake-up timeout period 5.3 functional description the configuration registers are used in the initialization of various options. the configuration registers can be written once after each reset.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 56 configuration register (config) motorola configuration register (config) non-disclosure agreement required most of the configuration register bits are cleared during reset. since the various options affect the operation of the microcontroller unit (mcu) it is recommended that this register be written immediately after reset. the configuration register is located at $001e and $001f, and may be read at anytime. note: the config registers are one-time writable by the user after each reset. upon a reset, the config registers default to predetermined settings as shown in figure 5-1 and figure 5-2 . irqpud ? irq pin pullup control bit 1 = internal pullup is disconnected 0 = internal pullup is connected between irq pin and v dd irqen ? irq pin function selection bit 1 = interrupt request function active in pin 0 = interrupt request function inactive in pin oscopt1 and oscopt0 ? selection bits for oscillator option (0, 0) internal oscillator (0, 1) external oscillator (1, 0) external rc oscillator (1, 1) external xtal oscillator rsten ? r st pin function selection 1 = reset function active in pin 0 = reset function inactive in pin note: the rsten bit is cleared by a power-on reset (por) only. other resets will leave this bit unaffected. address: $001e bit 7654 321bit 0 read: irqpud irqen r oscopt1 oscopt0 r r rsten write: reset:000 0 0 00u por:000 0 0 000 r = reserved u = unaffected figure 5-1 configuration register 2 (config2)
configuration register (config) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola configuration register (config) 57 non-disclosure agreement required coprs (out of stop mode) ? cop reset period selection bit 1 = cop reset short cycle = (2 13 ? 2 4 ) busclkx4 0 = cop reset long cycle = (2 18 ? 2 4 ) busclkx4 coprs (in stop mode) ? auto wake-up period selection bit 1 = auto wake-up short cycle = (2 9 ) intrcosc 0 = auto wake-up long cycle = (2 14 ) intrcosc lvistop ? lvi enable in stop mode bit when the lvipwrd bit is clear, setting the lvistop bit enables the lvi to operate during stop mode. reset clears lvistop. 1 = lvi enabled during stop mode 0 = lvi disabled during stop mode lvirstd ? lvi reset disable bit lvirstd disables the reset signal from the lvi module. 1 = lvi module resets disabled 0 = lvi module resets enabled lvipwrd ? lvi power disable bit lvipwrd disables the lvi module. 1 = lvi module power disabled 0 = lvi module power enabled address: $001f bit 7654321bit 0 read: coprs lvistop lvirstd lvipwrd lvi5or3 ssrec stop copd write: reset:0000u000 por: 00000000 r = reserved u = unaffected figure 5-2 configuration register 1 (config1)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 58 configuration register (config) motorola configuration register (config) non-disclosure agreement required lvi5or3 ? lvi 5-v or 3-v operating mode bit lvi5or3 selects the voltage operating mode of the lvi module. the voltage mode selected for the lvi should match the operating v dd for the lvi ? s voltage trip points for each of the modes. 1 = lvi operates in 5-v mode 0 = lvi operates in 3-v mode note: the lvi5or3 bit is cleared by a power-on reset (por) only. other resets will leave this bit unaffected. ssrec ? short stop recovery bit ssrec enables the cpu to exit stop mode with a delay of 32 busclkx4 cycles instead of a 4096 busclkx4 cycle delay. 1 = stop mode recovery after 32 busclkx4 cycles 0 = stop mode recovery after 4096 busclkx4 cycles note: exiting stop mode by an lvi reset will result in the long stop recovery. when using the lvi during normal operation but disabling during stop mode, the lvi will have an enable time of t en . the system stabilization time for power-on reset and long stop recovery (both 4096 busclkx4 cycles) gives a delay longer than the lvi enable time for these startup scenarios. there is no period where the mcu is not protected from a low-power condition. however, when using the short stop recovery configuration option, the 32 busclkx4 delay must be greater than the lvi ? s turn on time to avoid a period in startup where the lvi is not protecting the mcu. stop ? stop instruction enable bit stop enables the stop instruction. 1 = stop instruction enabled 0 = stop instruction treated as illegal opcode copd ? cop disable bit copd disables the cop module. 1 = cop module disabled 0 = cop module enabled
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola central processor unit (cpu) 59 non-disclosure agreement required data sheet ? mc68hc908qy4 section 6. central processor unit (cpu) 6.1 contents 6.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 6.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 6.4 cpu registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.1 accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 6.4.2 index register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4.3 stack pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4.4 program counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.4.5 condition code register . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.5 arithmetic/logic unit (alu) . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.6 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 6.6.1 wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.6.2 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.7 cpu during break interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.8 instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 6.9 opcode map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 6.2 introduction the m68hc08 cpu (central processor unit) is an enhanced and fully object-code-compatible version of the m68hc05 cpu. the cpu08 reference manual (motorola document order number cpu08rm/ad) contains a description of the cpu instruction set, addressing modes, and architecture.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 60 central processor unit (cpu) motorola central processor unit (cpu) non-disclosure agreement required 6.3 features features of the cpu include:  object code fully upward-compatible with m68hc05 family  16-bit stack pointer with stack manipulation instructions  16-bit index register with x-register manipulation instructions  8-mhz cpu internal bus frequency  64-kbyte program/data memory space  16 addressing modes  memory-to-memory data moves without using accumulator  fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  enhanced binary-coded decimal (bcd) data handling  modular architecture with expandable internal bus definition for extension of addressing range beyond 64 kbytes  low-power stop and wait modes 6.4 cpu registers figure 6-1 shows the five cpu registers. cpu registers are not part of the memory map.
central processor unit (cpu) cpu registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola central processor unit (cpu) 61 non-disclosure agreement required figure 6-1. cpu registers 6.4.1 accumulator the accumulator is a general-purpose 8-bit register. the cpu uses the accumulator to hold operands and the results of arithmetic/logic operations. 6.4.2 index register the 16-bit index register allows indexed addressing of a 64-kbyte memory space. h is the upper byte of the index register, and x is the lower byte. h:x is the concatenated 16-bit index register. in the indexed addressing modes, the cpu uses the contents of the index register to determine the conditional address of the operand. accumulator (a) index register (h:x) stack pointer (sp) program counter (pc) condition code register (ccr) carry/borrow flag zero flag negative flag interrupt mask half-carry flag two?s complement overflow flag v11hinzc h x 0 0 0 0 7 15 15 15 70 bit 7654321bit 0 read: write: reset: unaffected by reset figure 6-2. accumulator (a)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 62 central processor unit (cpu) motorola central processor unit (cpu) non-disclosure agreement required the index register can serve also as a temporary data storage location. 6.4.3 stack pointer the stack pointer is a 16-bit register that contains the address of the next location on the stack. during a reset, the stack pointer is preset to $00ff. the reset stack pointer (rsp) instruction sets the least significant byte to $ff and does not affect the most significant byte. the stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. in the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. the cpu uses the contents of the stack pointer to determine the conditional address of the operand. note: the location of the stack is arbitrary and may be relocated anywhere in ram. moving the sp out of page 0 ($0000 to $00ff) frees direct address (page 0) space. for correct operation, the stack pointer must point only to ram locations. bit 15 1413121110987654321 bit 0 read: write: reset:00000000 xxxxxxxx x = indeterminate figure 6-3. index register (h:x) bit 15 1413121110987654321 bit 0 read: write: reset:0000000011111111 figure 6-4. stack pointer (sp)
central processor unit (cpu) cpu registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola central processor unit (cpu) 63 non-disclosure agreement required 6.4.4 program counter the program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. during reset, the program counter is loaded with the reset vector address located at $fffe and $ffff. the vector address is the address of the first instruction to be executed after exiting the reset state. 6.4.5 condition code register the 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. bits 6 and 5 are set permanently to logic 1. the following paragraphs describe the functions of the condition code register. bit 15 1413121110987654321 bit 0 read: write: reset: loaded with vector from $fffe and $ffff figure 6-5. program counter (pc) bit 7654321bit 0 read: v11h i nzc write: reset:x11x1xxx x = indeterminate figure 6-6. condition code register (ccr)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 64 central processor unit (cpu) motorola central processor unit (cpu) non-disclosure agreement required v ? overflow flag the cpu sets the overflow flag when a two's complement overflow occurs. the signed branch instructions bgt, bge, ble, and blt use the overflow flag. 1 = overflow 0 = no overflow h ? half-carry flag the cpu sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (add) or add-with-carry (adc) operation. the half-carry flag is required for binary-coded decimal (bcd) arithmetic operations. the daa instruction uses the states of the h and c flags to determine the appropriate correction factor. 1 = carry between bits 3 and 4 0 = no carry between bits 3 and 4 i ? interrupt mask when the interrupt mask is set, all maskable cpu interrupts are disabled. cpu interrupts are enabled when the interrupt mask is cleared. when a cpu interrupt occurs, the interrupt mask is set automatically after the cpu registers are saved on the stack, but before the interrupt vector is fetched. 1 = interrupts disabled 0 = interrupts enabled note: to maintain m6805 family compatibility, the upper byte of the index register (h) is not stacked automatically. if the interrupt service routine modifies h, then the user must stack and unstack h using the pshh and pulh instructions. after the i bit is cleared, the highest-priority interrupt request is serviced first. a return-from-interrupt (rti) instruction pulls the cpu registers from the stack and restores the interrupt mask from the stack. after any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (cli).
central processor unit (cpu) arithmetic/logic unit (alu) mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola central processor unit (cpu) 65 non-disclosure agreement required n ? negative flag the cpu sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = negative result 0 = non-negative result z ? zero flag the cpu sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = zero result 0 = non-zero result c ? carry/borrow flag the cpu sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. some instructions ? such as bit test and branch, shift, and rotate ? also clear or set the carry/borrow flag. 1 = carry out of bit 7 0 = no carry out of bit 7 6.5 arithmetic/logic unit (alu) the alu performs the arithmetic and logic operations defined by the instruction set. refer to the cpu08 reference manual (motorola document order number cpu08rm/ad) for a description of the instructions and addressing modes and more detail about the architecture of the cpu. 6.6 low-power modes the wait and stop instructions put the mcu in low power-consumption standby modes.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 66 central processor unit (cpu) motorola central processor unit (cpu) non-disclosure agreement required 6.6.1 wait mode the wait instruction:  clears the interrupt mask (i bit) in the condition code register, enabling interrupts. after exit from wait mode by interrupt, the i bit remains clear. after exit by reset, the i bit is set.  disables the cpu clock 6.6.2 stop mode the stop instruction:  clears the interrupt mask (i bit) in the condition code register, enabling external interrupts. after exit from stop mode by external interrupt, the i bit remains clear. after exit by reset, the i bit is set.  disables the cpu clock after exiting stop mode, the cpu clock begins running after the oscillator stabilization delay. 6.7 cpu during break interrupts if a break module is present on the mcu, the cpu starts a break interrupt by:  loading the instruction register with the swi instruction  loading the program counter with $fffc:$fffd or with $fefc:$fefd in monitor mode the break interrupt begins after completion of the cpu instruction in progress. if the break address register match occurs on the last cycle of a cpu instruction, the break interrupt begins immediately. a return-from-interrupt instruction (rti) in the break routine ends the break interrupt and returns the mcu to normal operation if the break interrupt has been deasserted.
central processor unit (cpu) instruction set summary mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola central processor unit (cpu) 67 non-disclosure agreement required 6.8 instruction set summary table 6-1 provides a summary of the m68hc08 instruction set. table 6-1. instruction set summary (sheet 1 of 7) source form operation description effect on ccr address mode opcode operand cycles vh i nzc adc # opr adc opr adc opr adc opr ,x adc opr ,x adc ,x adc opr ,sp adc opr ,sp add with carry a (a) + (m) + (c)  ?  imm dir ext ix2 ix1 ix sp1 sp2 a9 b9 c9 d9 e9 f9 9ee9 9ed9 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 add # opr add opr add opr add opr ,x add opr ,x add ,x add opr ,sp add opr ,sp add without carry a (a) + (m)  ?  imm dir ext ix2 ix1 ix sp1 sp2 ab bb cb db eb fb 9eeb 9edb ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 ais # opr add immediate value (signed) to sp sp (sp) + (16 ? m) ?????? imm a7 ii 2 aix # opr add immediate value (signed) to h:x h:x (h:x) + (16 ? m) ?????? imm af ii 2 and # opr and opr and opr and opr ,x and opr ,x and ,x and opr ,sp and opr ,sp logical and a (a) & (m) 0 ??  ? imm dir ext ix2 ix1 ix sp1 sp2 a4 b4 c4 d4 e4 f4 9ee4 9ed4 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 asl opr asla aslx asl opr ,x asl ,x asl opr ,sp arithmetic shift left (same as lsl)  ??  dir inh inh ix1 ix sp1 38 48 58 68 78 9e68 dd ff ff 4 1 1 4 3 5 asr opr asra asrx asr opr ,x asr opr ,x asr opr ,sp arithmetic shift right  ??  dir inh inh ix1 ix sp1 37 47 57 67 77 9e67 dd ff ff 4 1 1 4 3 5 bcc rel branch if carry bit clear pc (pc) + 2 + rel ? (c) = 0 ?????? rel 24 rr 3 bclr n , opr clear bit n in m mn 0 ?????? dir (b0) dir (b1) dir (b2) dir (b3) dir (b4) dir (b5) dir (b6) dir (b7) 11 13 15 17 19 1b 1d 1f dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 bcs rel branch if carry bit set (same as blo) pc (pc) + 2 + rel ? (c) = 1 ?????? rel 25 rr 3 beq rel branch if equal pc (pc) + 2 + rel ? (z) = 1 ?????? rel 27 rr 3 c b0 b7 0 b0 b7 c
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 68 central processor unit (cpu) motorola central processor unit (cpu) non-disclosure agreement required bge opr branch if greater than or equal to (signed operands) pc (pc) + 2 + rel ? (n v ) = 0 ?????? rel 90 rr 3 bgt opr branch if greater than (signed operands) pc (pc) + 2 + rel ? (z) | (n v ) = 0 ?????? rel 92 rr 3 bhcc rel branch if half carry bit clear pc (pc) + 2 + rel ? (h) = 0 ?????? rel 28 rr 3 bhcs rel branch if half carry bit set pc (pc) + 2 + rel ? (h) = 1 ?????? rel 29 rr 3 bhi rel branch if higher pc (pc) + 2 + rel ? (c) | (z) = 0 ?????? rel 22 rr 3 bhs rel branch if higher or same (same as bcc) pc (pc) + 2 + rel ? (c) = 0 ?????? rel 24 rr 3 bih rel branch if irq pin high pc (pc) + 2 + rel ? irq = 1 ?????? rel 2f rr 3 bil rel branch if irq pin low pc (pc) + 2 + rel ? irq = 0 ?????? rel 2e rr 3 bit # opr bit opr bit opr bit opr ,x bit opr ,x bit ,x bit opr ,sp bit opr ,sp bit test (a) & (m) 0 ??  ? imm dir ext ix2 ix1 ix sp1 sp2 a5 b5 c5 d5 e5 f5 9ee5 9ed5 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 ble opr branch if less than or equal to (signed operands) pc (pc) + 2 + rel ? (z) | (n v ) = 1 ?????? rel 93 rr 3 blo rel branch if lower (same as bcs) pc (pc) + 2 + rel ? (c) = 1 ?????? rel 25 rr 3 bls rel branch if lower or same pc (pc) + 2 + rel ? (c) | (z) = 1 ?????? rel 23 rr 3 blt opr branch if less than (signed operands) pc (pc) + 2 + rel ? (n v ) = 1 ?????? rel 91 rr 3 bmc rel branch if interrupt mask clear pc (pc) + 2 + rel ? (i) = 0 ?????? rel 2c rr 3 bmi rel branch if minus pc (pc) + 2 + rel ? (n) = 1 ?????? rel 2b rr 3 bms rel branch if interrupt mask set pc (pc) + 2 + rel ? (i) = 1 ?????? rel 2d rr 3 bne rel branch if not equal pc (pc) + 2 + rel ? (z) = 0 ?????? rel 26 rr 3 bpl rel branch if plus pc (pc) + 2 + rel ? (n) = 0 ?????? rel 2a rr 3 bra rel branch always pc (pc) + 2 + rel ?????? rel 20 rr 3 brclr n , opr , rel branch if bit n in m clear pc (pc) + 3 + rel ? (mn) = 0 ?????  dir (b0) dir (b1) dir (b2) dir (b3) dir (b4) dir (b5) dir (b6) dir (b7) 01 03 05 07 09 0b 0d 0f dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 brn rel branch never pc (pc) + 2 ?????? rel 21 rr 3 table 6-1. instruction set summary (sheet 2 of 7) source form operation description effect on ccr address mode opcode operand cycles vh i nzc
central processor unit (cpu) instruction set summary mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola central processor unit (cpu) 69 non-disclosure agreement required brset n , opr , rel branch if bit n in m set pc (pc) + 3 + rel ? (mn) = 1 ?????  dir (b0) dir (b1) dir (b2) dir (b3) dir (b4) dir (b5) dir (b6) dir (b7) 00 02 04 06 08 0a 0c 0e dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 bset n , opr set bit n in m mn 1 ?????? dir (b0) dir (b1) dir (b2) dir (b3) dir (b4) dir (b5) dir (b6) dir (b7) 10 12 14 16 18 1a 1c 1e dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 bsr rel branch to subroutine pc (pc) + 2; push (pcl) sp (sp) ? 1; push (pch) sp (sp) ? 1 pc (pc) + rel ?????? rel ad rr 4 cbeq opr,rel cbeqa # opr,rel cbeqx # opr,rel cbeq opr, x+ ,rel cbeq x+ ,rel cbeq opr, sp ,rel compare and branch if equal pc (pc) + 3 + rel ? (a) ? (m) = $00 pc (pc) + 3 + rel ? (a) ? (m) = $00 pc (pc) + 3 + rel ? (x) ? (m) = $00 pc (pc) + 3 + rel ? (a) ? (m) = $00 pc (pc) + 2 + rel ? (a) ? (m) = $00 pc (pc) + 4 + rel ? (a) ? (m) = $00 ?????? dir imm imm ix1+ ix+ sp1 31 41 51 61 71 9e61 dd rr ii rr ii rr ff rr rr ff rr 5 4 4 5 4 6 clc clear carry bit c 0 ????? 0inh 98 1 cli clear interrupt mask i 0 ?? 0 ??? inh 9a 2 clr opr clra clrx clrh clr opr ,x clr ,x clr opr ,sp clear m $00 a $00 x $00 h $00 m $00 m $00 m $00 0 ?? 01 ? dir inh inh inh ix1 ix sp1 3f 4f 5f 8c 6f 7f 9e6f dd ff ff 3 1 1 1 3 2 4 cmp # opr cmp opr cmp opr cmp opr ,x cmp opr ,x cmp ,x cmp opr ,sp cmp opr ,sp compare a with m (a) ? (m)  ??  imm dir ext ix2 ix1 ix sp1 sp2 a1 b1 c1 d1 e1 f1 9ee1 9ed1 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 com opr coma comx com opr ,x com ,x com opr ,sp complement (one ? s complement) m (m ) = $ff ? (m) a (a ) = $ff ? (m) x (x ) = $ff ? (m) m (m ) = $ff ? (m) m (m ) = $ff ? (m) m (m ) = $ff ? (m) 0 ??  1 dir inh inh ix1 ix sp1 33 43 53 63 73 9e63 dd ff ff 4 1 1 4 3 5 cphx # opr cphx opr compare h:x with m (h:x) ? (m:m + 1)  ??  imm dir 65 75 ii ii+1 dd 3 4 table 6-1. instruction set summary (sheet 3 of 7) source form operation description effect on ccr address mode opcode operand cycles vh i nzc
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 70 central processor unit (cpu) motorola central processor unit (cpu) non-disclosure agreement required cpx # opr cpx opr cpx opr cpx ,x cpx opr ,x cpx opr ,x cpx opr ,sp cpx opr ,sp compare x with m (x) ? (m)  ??  imm dir ext ix2 ix1 ix sp1 sp2 a3 b3 c3 d3 e3 f3 9ee3 9ed3 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 daa decimal adjust a (a) 10 u ??  inh 72 2 dbnz opr,rel dbnza rel dbnzx rel dbnz opr, x ,rel dbnz x ,rel dbnz opr, sp ,rel decrement and branch if not zero a (a) ? 1 or m (m) ? 1 or x (x) ? 1 pc (pc) + 3 + rel ? (result) 0 pc (pc) + 2 + rel ? (result) 0 pc (pc) + 2 + rel ? (result) 0 pc (pc) + 3 + rel ? (result) 0 pc (pc) + 2 + rel ? (result) 0 pc (pc) + 4 + rel ? (result) 0 ?????? dir inh inh ix1 ix sp1 3b 4b 5b 6b 7b 9e6b dd rr rr rr ff rr rr ff rr 5 3 3 5 4 6 dec opr deca decx dec opr ,x dec ,x dec opr ,sp decrement m (m) ? 1 a (a) ? 1 x (x) ? 1 m (m) ? 1 m (m) ? 1 m (m) ? 1  ??  ? dir inh inh ix1 ix sp1 3a 4a 5a 6a 7a 9e6a dd ff ff 4 1 1 4 3 5 div divide a (h:a)/(x) h remainder ????  inh 52 7 eor # opr eor opr eor opr eor opr ,x eor opr ,x eor ,x eor opr ,sp eor opr ,sp exclusive or m with a a (a m) 0 ??  ? imm dir ext ix2 ix1 ix sp1 sp2 a8 b8 c8 d8 e8 f8 9ee8 9ed8 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 inc opr inca incx inc opr ,x inc ,x inc opr ,sp increment m (m) + 1 a (a) + 1 x (x) + 1 m (m) + 1 m (m) + 1 m (m) + 1  ??  ? dir inh inh ix1 ix sp1 3c 4c 5c 6c 7c 9e6c dd ff ff 4 1 1 4 3 5 jmp opr jmp opr jmp opr ,x jmp opr ,x jmp ,x jump pc jump address ?????? dir ext ix2 ix1 ix bc cc dc ec fc dd hh ll ee ff ff 2 3 4 3 2 jsr opr jsr opr jsr opr ,x jsr opr ,x jsr ,x jump to subroutine pc (pc) + n ( n = 1, 2, or 3) push (pcl); sp (sp) ? 1 push (pch); sp (sp) ? 1 pc unconditional address ?????? dir ext ix2 ix1 ix bd cd dd ed fd dd hh ll ee ff ff 4 5 6 5 4 lda # opr lda opr lda opr lda opr ,x lda opr ,x lda ,x lda opr ,sp lda opr ,sp load a from m a (m) 0 ??  ? imm dir ext ix2 ix1 ix sp1 sp2 a6 b6 c6 d6 e6 f6 9ee6 9ed6 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 table 6-1. instruction set summary (sheet 4 of 7) source form operation description effect on ccr address mode opcode operand cycles vh i nzc
central processor unit (cpu) instruction set summary mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola central processor unit (cpu) 71 non-disclosure agreement required ldhx # opr ldhx opr load h:x from m h:x ( m:m + 1 ) 0 ??  ? imm dir 45 55 ii jj dd 3 4 ldx # opr ldx opr ldx opr ldx opr ,x ldx opr ,x ldx ,x ldx opr ,sp ldx opr ,sp load x from m x (m) 0 ??  ? imm dir ext ix2 ix1 ix sp1 sp2 ae be ce de ee fe 9eee 9ede ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 lsl opr lsla lslx lsl opr ,x lsl ,x lsl opr ,sp logical shift left (same as asl)  ??  dir inh inh ix1 ix sp1 38 48 58 68 78 9e68 dd ff ff 4 1 1 4 3 5 lsr opr lsra lsr x lsr opr ,x lsr ,x lsr opr ,sp logical shift right  ?? 0  dir inh inh ix1 ix sp1 34 44 54 64 74 9e64 dd ff ff 4 1 1 4 3 5 mov opr,opr mov opr, x+ mov # opr,opr mov x+ ,opr move (m) destination (m) source h:x (h:x) + 1 (ix+d, dix+) 0 ??  ? dd dix+ imd ix+d 4e 5e 6e 7e dd dd dd ii dd dd 5 4 4 4 mul unsigned multiply x:a (x) (a) ? 0 ??? 0inh 42 5 neg opr nega negx neg opr ,x neg ,x neg opr ,sp negate (two ? s complement) m ? (m) = $00 ? (m) a ? (a) = $00 ? (a) x ? (x) = $00 ? (x) m ? (m) = $00 ? (m) m ? (m) = $00 ? (m)  ??  dir inh inh ix1 ix sp1 30 40 50 60 70 9e60 dd ff ff 4 1 1 4 3 5 nop no operation none ?????? inh 9d 1 nsa nibble swap a a (a[3:0]:a[7:4]) ?????? inh 62 3 ora # opr ora opr ora opr ora opr ,x ora opr ,x ora ,x ora opr ,sp ora opr ,sp inclusive or a and m a (a) | (m) 0 ??  ? imm dir ext ix2 ix1 ix sp1 sp2 aa ba ca da ea fa 9eea 9eda ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 psha push a onto stack push (a); sp (sp ) ? 1 ?????? inh 87 2 pshh push h onto stack push (h) ; sp (sp ) ? 1 ?????? inh 8b 2 pshx push x onto stack push (x) ; sp (sp ) ? 1 ?????? inh 89 2 pula pull a from stack sp (sp + 1); pull ( a ) ?????? inh 86 2 pulh pull h from stack sp (sp + 1); pull ( h ) ?????? inh 8a 2 pulx pull x from stack sp (sp + 1); pull ( x ) ?????? inh 88 2 table 6-1. instruction set summary (sheet 5 of 7) source form operation description effect on ccr address mode opcode operand cycles vh i nzc c b0 b7 0 b0 b7 c 0
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 72 central processor unit (cpu) motorola central processor unit (cpu) non-disclosure agreement required rol opr rola rolx rol opr ,x rol ,x rol opr ,sp rotate left through carry  ??  dir inh inh ix1 ix sp1 39 49 59 69 79 9e69 dd ff ff 4 1 1 4 3 5 ror opr rora rorx ror opr ,x ror ,x ror opr ,sp rotate right through carry  ??  dir inh inh ix1 ix sp1 36 46 56 66 76 9e66 dd ff ff 4 1 1 4 3 5 rsp reset stack pointer sp $ff ?????? inh 9c 1 rti return from interrupt sp (sp) + 1; pull (ccr) sp (sp) + 1; pull (a) sp (sp) + 1; pull (x) sp (sp) + 1; pull (pch) sp (sp) + 1; pull (pcl)  inh 80 7 rts return from subroutine sp sp + 1 ; pull ( pch) sp sp + 1; pull (pcl) ?????? inh 81 4 sbc # opr sbc opr sbc opr sbc opr ,x sbc opr ,x sbc ,x sbc opr ,sp sbc opr ,sp subtract with carry a (a) ? (m) ? (c)  ??  imm dir ext ix2 ix1 ix sp1 sp2 a2 b2 c2 d2 e2 f2 9ee2 9ed2 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 sec set carry bit c 1 ????? 1inh 99 1 sei set interrupt mask i 1 ?? 1 ??? inh 9b 2 sta opr sta opr sta opr ,x sta opr ,x sta ,x sta opr ,sp sta opr ,sp store a in m m (a) 0 ??  ? dir ext ix2 ix1 ix sp1 sp2 b7 c7 d7 e7 f7 9ee7 9ed7 dd hh ll ee ff ff ff ee ff 3 4 4 3 2 4 5 sthx opr store h:x in m (m:m + 1) (h:x) 0 ??  ? dir 35 dd 4 stop enable irq pin; stop oscillator i 0; stop oscillator ?? 0 ??? inh 8e 1 stx opr stx opr stx opr ,x stx opr ,x stx ,x stx opr ,sp stx opr ,sp store x in m m (x) 0 ??  ? dir ext ix2 ix1 ix sp1 sp2 bf cf df ef ff 9eef 9edf dd hh ll ee ff ff ff ee ff 3 4 4 3 2 4 5 sub # opr sub opr sub opr sub opr ,x sub opr ,x sub ,x sub opr ,sp sub opr ,sp subtract a (a) ? (m)  ??  imm dir ext ix2 ix1 ix sp1 sp2 a0 b0 c0 d0 e0 f0 9ee0 9ed0 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 table 6-1. instruction set summary (sheet 6 of 7) source form operation description effect on ccr address mode opcode operand cycles vh i nzc c b0 b7 b0 b7 c
central processor unit (cpu) opcode map mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola central processor unit (cpu) 73 non-disclosure agreement required 6.9 opcode map the opcode map is provided in table 6-2 . swi software interrupt pc (pc) + 1; push (pcl) sp (sp) ? 1; push (pch) sp (sp) ? 1; push (x) sp (sp) ? 1; push (a) sp (sp) ? 1; push (ccr) sp (sp) ? 1; i 1 pch interrupt vector high byte pcl interrupt vector low byte ?? 1 ??? inh 83 9 tap transfer a to ccr ccr (a)  inh 84 2 tax transfer a to x x (a) ?????? inh 97 1 tpa transfer ccr to a a (ccr) ?????? inh 85 1 tst opr tsta tstx tst opr ,x tst ,x tst opr ,sp test for negative or zero (a) ? $00 or (x) ? $00 or (m) ? $00 0 ??  ? dir inh inh ix1 ix sp1 3d 4d 5d 6d 7d 9e6d dd ff ff 3 1 1 3 2 4 tsx transfer sp to h:x h:x (sp) + 1 ?????? inh 95 2 txa transfer x to a a (x) ?????? inh 9f 1 txs transfer h:x to sp (sp) (h:x) ? 1 ?????? inh 94 2 a accumulator n any bit c carry/borrow bit opr operand (one or two bytes) ccr condition code register pc program counter dd direct address of operand pch program counter high byte dd rr direct address of operand and relative offset of branch instruction pcl program counter low byte dd direct to direct addressing mode rel relative addressing mode dir direct addressing mode rel relative program counter offset byte dix+ direct to indexed with post increment addressing mode rr relative program counter offset byte ee ff high and low bytes of offset in indexed, 16-bit offset addressing sp1 stack pointer, 8-bit offset addressing mode ext extended addressing mode sp2 stack pointer 16-bit offset addressing mode ff offset byte in indexed, 8-bit offset addressing sp stack pointer h half-carry bit u undefined h index register high byte v overflow bit hh ll high and low bytes of operand address in extended addressing x index register low byte i interrupt mask z zero bit ii immediate operand byte & logical and imd immediate source to direct destination addressing mode | logical or imm immediate addressing mode logical exclusive or inh inherent addressing mode ( ) contents of ix indexed, no offset addressing mode ? ( ) negation (two ? s complement) ix+ indexed, no offset, post increment addressing mode # immediate value ix+d indexed with post increment to direct addressing mode ? sign extend ix1 indexed, 8-bit offset addressing mode loaded with ix1+ indexed, 8-bit offset, post increment addressing mode ? if ix2 indexed, 16-bit offset addressing mode : concatenated with m memory location  set or cleared n negative bit ? not affected table 6-1. instruction set summary (sheet 7 of 7) source form operation description effect on ccr address mode opcode operand cycles vh i nzc
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 74 central processor unit (cpu) motorola central processor unit (cpu) non-disclosure agreement required table 6-2. opcode map bit manipulation branch read-modify-write control register/memory dir dir rel dir inh inh ix1 sp1 ix inh inh imm dir ext ix2 sp2 ix1 sp1 ix 0 12 3 4 5 69e67 8 9abcd9ede9eef 0 5 brset0 3dir 4 bset0 2dir 3 bra 2rel 4 neg 2dir 1 nega 1inh 1 negx 1inh 4 neg 2ix1 5 neg 3sp1 3 neg 1ix 7 rti 1inh 3 bge 2rel 2 sub 2imm 3 sub 2dir 4 sub 3ext 4 sub 3ix2 5 sub 4sp2 3 sub 2ix1 4 sub 3 sp1 2 sub 1ix 1 5 brclr0 3dir 4 bclr0 2dir 3 brn 2rel 5 cbeq 3dir 4 cbeqa 3imm 4 cbeqx 3imm 5 cbeq 3ix1+ 6 cbeq 4sp1 4 cbeq 2ix+ 4 rts 1inh 3 blt 2rel 2 cmp 2imm 3 cmp 2dir 4 cmp 3ext 4 cmp 3ix2 5 cmp 4sp2 3 cmp 2ix1 4 cmp 3 sp1 2 cmp 1ix 2 5 brset1 3dir 4 bset1 2dir 3 bhi 2rel 5 mul 1inh 7 div 1inh 3 nsa 1inh 2 daa 1inh 3 bgt 2rel 2 sbc 2imm 3 sbc 2dir 4 sbc 3ext 4 sbc 3ix2 5 sbc 4sp2 3 sbc 2ix1 4 sbc 3 sp1 2 sbc 1ix 3 5 brclr1 3dir 4 bclr1 2dir 3 bls 2rel 4 com 2dir 1 coma 1inh 1 comx 1inh 4 com 2ix1 5 com 3sp1 3 com 1ix 9 swi 1inh 3 ble 2rel 2 cpx 2imm 3 cpx 2dir 4 cpx 3ext 4 cpx 3ix2 5 cpx 4sp2 3 cpx 2ix1 4 cpx 3 sp1 2 cpx 1ix 4 5 brset2 3dir 4 bset2 2dir 3 bcc 2rel 4 lsr 2dir 1 lsra 1inh 1 lsrx 1inh 4 lsr 2ix1 5 lsr 3sp1 3 lsr 1ix 2 ta p 1inh 2 txs 1inh 2 and 2imm 3 and 2dir 4 and 3ext 4 and 3ix2 5 and 4sp2 3 and 2ix1 4 and 3 sp1 2 and 1ix 5 5 brclr2 3dir 4 bclr2 2dir 3 bcs 2rel 4 sthx 2dir 3 ldhx 3imm 4 ldhx 2dir 3 cphx 3imm 4 cphx 2dir 1 tpa 1inh 2 tsx 1inh 2 bit 2imm 3 bit 2dir 4 bit 3ext 4 bit 3ix2 5 bit 4sp2 3 bit 2ix1 4 bit 3 sp1 2 bit 1ix 6 5 brset3 3dir 4 bset3 2dir 3 bne 2rel 4 ror 2dir 1 rora 1inh 1 rorx 1inh 4 ror 2ix1 5 ror 3sp1 3 ror 1ix 2 pula 1inh 2 lda 2imm 3 lda 2dir 4 lda 3ext 4 lda 3ix2 5 lda 4sp2 3 lda 2ix1 4 lda 3 sp1 2 lda 1ix 7 5 brclr3 3dir 4 bclr3 2dir 3 beq 2rel 4 asr 2dir 1 asra 1inh 1 asrx 1inh 4 asr 2ix1 5 asr 3sp1 3 asr 1ix 2 psha 1inh 1 tax 1inh 2 ais 2imm 3 sta 2dir 4 sta 3ext 4 sta 3ix2 5 sta 4sp2 3 sta 2ix1 4 sta 3 sp1 2 sta 1ix 8 5 brset4 3dir 4 bset4 2dir 3 bhcc 2rel 4 lsl 2dir 1 lsla 1inh 1 lslx 1inh 4 lsl 2ix1 5 lsl 3sp1 3 lsl 1ix 2 pulx 1inh 1 clc 1inh 2 eor 2imm 3 eor 2dir 4 eor 3ext 4 eor 3ix2 5 eor 4sp2 3 eor 2ix1 4 eor 3 sp1 2 eor 1ix 9 5 brclr4 3dir 4 bclr4 2dir 3 bhcs 2rel 4 rol 2dir 1 rola 1inh 1 rolx 1inh 4 rol 2ix1 5 rol 3sp1 3 rol 1ix 2 pshx 1inh 1 sec 1inh 2 adc 2imm 3 adc 2dir 4 adc 3ext 4 adc 3ix2 5 adc 4sp2 3 adc 2ix1 4 adc 3 sp1 2 adc 1ix a 5 brset5 3dir 4 bset5 2dir 3 bpl 2rel 4 dec 2dir 1 deca 1inh 1 decx 1inh 4 dec 2ix1 5 dec 3sp1 3 dec 1ix 2 pulh 1inh 2 cli 1inh 2 ora 2imm 3 ora 2dir 4 ora 3ext 4 ora 3ix2 5 ora 4sp2 3 ora 2ix1 4 ora 3 sp1 2 ora 1ix b 5 brclr5 3dir 4 bclr5 2dir 3 bmi 2rel 5 dbnz 3dir 3 dbnza 2inh 3 dbnzx 2inh 5 dbnz 3ix1 6 dbnz 4sp1 4 dbnz 2ix 2 pshh 1inh 2 sei 1inh 2 add 2imm 3 add 2dir 4 add 3ext 4 add 3ix2 5 add 4sp2 3 add 2ix1 4 add 3 sp1 2 add 1ix c 5 brset6 3dir 4 bset6 2dir 3 bmc 2rel 4 inc 2dir 1 inca 1inh 1 incx 1inh 4 inc 2ix1 5 inc 3sp1 3 inc 1ix 1 clrh 1inh 1 rsp 1inh 2 jmp 2dir 3 jmp 3ext 4 jmp 3ix2 3 jmp 2ix1 2 jmp 1ix d 5 brclr6 3dir 4 bclr6 2dir 3 bms 2rel 3 tst 2dir 1 tsta 1inh 1 tstx 1inh 3 tst 2ix1 4 tst 3sp1 2 tst 1ix 1 nop 1inh 4 bsr 2rel 4 jsr 2dir 5 jsr 3ext 6 jsr 3ix2 5 jsr 2ix1 4 jsr 1ix e 5 brset7 3dir 4 bset7 2dir 3 bil 2rel 5 mov 3dd 4 mov 2dix+ 4 mov 3imd 4 mov 2ix+d 1 stop 1inh * 2 ldx 2imm 3 ldx 2dir 4 ldx 3ext 4 ldx 3ix2 5 ldx 4sp2 3 ldx 2ix1 4 ldx 3 sp1 2 ldx 1ix f 5 brclr7 3dir 4 bclr7 2dir 3 bih 2rel 3 clr 2dir 1 clra 1inh 1 clrx 1inh 3 clr 2ix1 4 clr 3sp1 2 clr 1ix 1 wait 1inh 1 txa 1inh 2 aix 2imm 3 stx 2dir 4 stx 3ext 4 stx 3ix2 5 stx 4sp2 3 stx 2ix1 4 stx 3 sp1 2 stx 1ix inh inherent rel relative sp1 stack pointer, 8-bit offset imm immediate ix indexed, no offset sp2 stack pointer, 16-bit offset dir direct ix1 indexed, 8-bit offset ix+ indexed, no offset with ext extended ix2 indexed, 16-bit offset post increment dd direct-direct imd immediate-direct ix1+ indexed, 1-byte offset with ix+d indexed-direct dix+ direct-indexed post increment * pre-byte for stack pointer indexed instructions 0 high byte of opcode in hexadecimal low byte of opcode in hexadecimal 0 5 brset0 3dir cycles opcode mnemonic number of bytes / addressing mode msb lsb msb lsb
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola system integration module (sim) 75 non-disclosure agreement required data sheet ? mc68hc908qy4 section 7. system integration module (sim) 7.1 contents 7.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 7.3 rst and irq pins initialization . . . . . . . . . . . . . . . . . . . . . . . .79 7.4 sim bus clock control and generation . . . . . . . . . . . . . . . . . .79 7.4.1 bus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 7.4.2 clock start-up from por . . . . . . . . . . . . . . . . . . . . . . . . . . .79 7.4.3 clocks in stop mode and wait mode . . . . . . . . . . . . . . . . . . 80 7.5 reset and system initialization. . . . . . . . . . . . . . . . . . . . . . . . .80 7.5.1 external pin reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 7.5.2 active resets from internal sources . . . . . . . . . . . . . . . . . .81 7.5.2.1 power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 7.5.2.2 computer operating properly (cop) reset. . . . . . . . . . .83 7.5.2.3 illegal opcode reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.5.2.4 illegal address reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.5.2.5 low-voltage inhibit (lvi) reset . . . . . . . . . . . . . . . . . . . .84 7.6 sim counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 7.6.1 sim counter during power-on reset . . . . . . . . . . . . . . . . .85 7.6.2 sim counter during stop mode recovery . . . . . . . . . . . . . .85 7.6.3 sim counter and reset states. . . . . . . . . . . . . . . . . . . . . . .85 7.7 exception control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.7.1 interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 7.7.1.1 hardware interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 7.7.1.2 swi instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 7.7.2 interrupt status registers. . . . . . . . . . . . . . . . . . . . . . . . . . .90 7.7.2.1 interrupt status register 1 . . . . . . . . . . . . . . . . . . . . . . . .91 7.7.2.2 interrupt status register 2 . . . . . . . . . . . . . . . . . . . . . . . .91 7.7.2.3 interrupt status register 3 . . . . . . . . . . . . . . . . . . . . . . . .92 7.7.3 reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.7.4 break interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 76 system integration module (sim) motorola system integration module (sim) non-disclosure agreement required 7.7.5 status flag protection in break mode . . . . . . . . . . . . . . . . .93 7.8 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 7.8.1 wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 7.8.2 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 7.9 sim registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 7.9.1 sim reset status register . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.9.2 break flag control register . . . . . . . . . . . . . . . . . . . . . . . . .98 7.9.3 break status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 7.2 introduction this section describes the system integration module (sim), which supports up to 24 external and/or internal interrupts. together with the central processor unit (cpu), the sim controls all microcontroller unit (mcu) activities. a block diagram of the sim is shown in figure 7-1 . figure 7-2 is a summary of the sim i/o registers. the sim is a system state controller that coordinates cpu and exception timing. the sim is responsible for:  bus clock generation and control for cpu and peripherals ? stop/wait/reset/break entry and recovery ? internal clock control  master reset control, including power-on reset (por) and computer operating properly (cop) timeout  interrupt control: ? acknowledge timing ? arbitration control timing ? vector address generation  cpu enable/disable timing  modular architecture expandable to 128 interrupt sources
system integration module (sim) introduction mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola system integration module (sim) 77 non-disclosure agreement required figure 7-1. sim block diagram table 7-1. signal name conventions signal name description busclkx4 buffered clock from the internal, rc or xtal oscillator circuit. busclkx2 the busclkx4 frequency divided by two. this signal is again divided by two in the sim to generate the internal bus clocks (bus clock = busclkx4 4). address bus internal address bus data bus internal data bus porrst signal from the power-on reset module to the sim irst internal reset signal r/w read/write signal stop/wait clock control clock generators por control reset pin control sim reset status register interrupt control and priority decode module stop module wait cpu stop (from cpu) cpu wait (from cpu) simoscen (to oscillator) busclkx2 (from oscillator) internal clocks master reset control reset pin logic illegal opcode (from cpu) illegal address (from address map decoders) cop timeout (from cop module) interrupt sources cpu interface reset control sim counter cop clock busclkx4 (from oscillator) 2 lvi reset (from lvi module) v dd internal pull-up forced mon mode entry (from menrst module)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 78 system integration module (sim) motorola system integration module (sim) non-disclosure agreement required addr. register name bit 7 6 5 4 3 2 1 bit 0 $fe00 break status register (bsr) see page 99. read: rrrrrr sbsw r write: note 1 reset:00000000 1. writing a logic 0 clears sbsw. $fe01 sim reset status register (srsr) see page 96. read: por pin cop ilop ilad modrst lvi 0 write: por:10000000 $fe02 reserved rrrrrrrr $fe03 break flag control register (bfcr) see page 98. read: bcferrrrrrr write: reset: 0 $fe04 interrupt status register 1 (int1) see page 91. read: 0 if5 if4 if3 0 if1 0 0 write:rrrrrrrr reset:00000000 $fe05 interrupt status register 2 (int2) see page 91. read: if14 0 0 0 0 0 0 0 write:rrrrrrrr reset:00000000 $fe06 interrupt status register 3 (int3) see page 92. read: 0 0 0 0 0 0 0 if15 write:rrrrrrrr reset:00000000 = unimplemented r = reserved figure 7-2. sim i/o register summary
system integration module (sim) rst and irq pins initialization mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola system integration module (sim) 79 non-disclosure agreement required 7.3 rst and irq pins initialization rst and irq pins come out of reset as pta3 and pta2 respectively. rst and irq functions can be activated by programing config2 accordingly. refer to section 5. configuration register (config) . 7.4 sim bus clock control and generation the bus clock generator provides system clock signals for the cpu and peripherals on the mcu. the system clocks are generated from an incoming clock, busclkx2, as shown in figure 7-3 . figure 7-3. sim clock signals 7.4.1 bus timing in user mode , the internal bus frequency is the oscillator frequency (busclkx4) divided by four. 7.4.2 clock start-up from por when the power-on reset module generates a reset, the clocks to the cpu and peripherals are inactive and held in an inactive phase until after the 4096 busclkx4 cycle por time out has completed. the rst pin is driven low by the sim during this entire period. the ibus clocks start upon completion of the time out. 2 bus clock generators sim sim counter from oscillator from oscillator busclkx2 busclkx4
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 80 system integration module (sim) motorola system integration module (sim) non-disclosure agreement required 7.4.3 clocks in stop mode and wait mode upon exit from stop mode by an interrupt, break, or reset, the sim allows busclkx4 to clock the sim counter. the cpu and peripheral clocks do not become active until after the stop delay time out. this time out is selectable as 4096 or 32 busclkx4 cycles. see 7.8.2 stop mode . in wait mode, the cpu clocks are inactive. the sim also produces two sets of clocks for other modules. refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. some modules can be programmed to be active in wait mode. 7.5 reset and system initialization the mcu has these reset sources:  power-on reset module (por)  external reset pin (rst )  computer operating properly module (cop)  low-voltage inhibit module (lvi)  illegal opcode  illegal address all of these resets produce the vector $fffe ? ffff ($fefe ? feff in monitor mode) and assert the internal reset signal (irst). irst causes all registers to be returned to their default values and all modules to be returned to their reset states. an internal reset clears the sim counter (see 7.6 sim counter ), but an external reset does not. each of the resets sets a corresponding bit in the sim reset status register (srsr). see 7.9 sim registers . 7.5.1 external pin reset the rst pin circuits include an internal pullup device. pulling the asynchronous rst pin low halts all processing. the pin bit of the sim reset status register (srsr) is set as long as rst is held low for a
system integration module (sim) reset and system initialization mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola system integration module (sim) 81 non-disclosure agreement required minimum of 67 busclkx4 cycles, assuming that the por was not the source of the reset. see table 7-2 for details. figure 7-4 shows the relative timing. figure 7-4. external reset timing 7.5.2 active resets from internal sources all internal reset sources actively pull the rst pin low for 32 busclkx4 cycles to allow resetting of external peripherals. the internal reset signal irst continues to be asserted for an additional 32 cycles (see figure 7-5 ). an internal reset can be caused by an illegal address, illegal opcode, cop time out, lvi, or por (see figure 7-6 ). figure 7-5. internal reset timing table 7-2. pin bit set timing reset type number of cycles required to set pin por 4163 (4096 + 64 + 3) all others 67 (64 + 3) rst address bus pc vect h vect l busclkx2 irst rst rst pulled low by mcu address 32 cycles 32 cycles vector high busclkx4 bus
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 82 system integration module (sim) motorola system integration module (sim) non-disclosure agreement required figure 7-6. sources of internal reset note: for por resets, the sim cycles through 4096 busclkx4 cycles during which the sim forces the rst pin low. the internal reset signal then follows the sequence from the falling edge of rst shown in figure 7-5 . the cop reset is asynchronous to the bus clock. the active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the mcu. 7.5.2.1 power-on reset when power is first applied to the mcu, the power-on reset module (por) generates a pulse to indicate that power on has occurred. the external reset pin (rst ) is held low while the sim counter counts out 4096 busclkx4 cycles. sixty-four busclkx4 cycles later, the cpu and memories are released from reset to allow the reset vector sequence to occur. at power on, the following events occur:  a por pulse is generated.  the internal reset signal is asserted.  the sim enables the oscillator to drive busclkx4.  internal clocks to the cpu and modules are held inactive for 4096 busclkx4 cycles to allow stabilization of the oscillator.  the rst pin is driven low during the oscillator stabilization time.  the por bit of the sim reset status register (srsr) is set and all other bits in the register are cleared. see figure 7-7 . illegal address rst illegal opcode rst coprst por lvi internal reset
system integration module (sim) reset and system initialization mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola system integration module (sim) 83 non-disclosure agreement required figure 7-7. por recovery 7.5.2.2 computer operating properly (cop) reset an input to the sim is reserved for the cop reset signal. the overflow of the cop counter causes an internal reset and sets the cop bit in the sim reset status register (srsr). the sim actively pulls down the rst pin for all internal reset sources. to prevent a cop module time out, write any value to location $ffff. writing to location $ffff clears the cop counter and stages 12 ? 5 of the sim counter. the sim counter output, which occurs at least every (2 12 ? 2 4 ) busclkx4 cycles, drives the cop counter. the cop should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first time out. the cop module is disabled during a break interrupt with monitor mode when bdcop bit is set in break auxiliary register (brkar). porrst osc1 busclkx4 busclkx2 rst address bus 4096 cycles 32 cycles 32 cycles $fffe $ffff
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 84 system integration module (sim) motorola system integration module (sim) non-disclosure agreement required 7.5.2.3 illegal opcode reset the sim decodes signals from the cpu to detect illegal instructions. an illegal instruction sets the ilop bit in the sim reset status register (srsr) and causes a reset. if the stop enable bit, stop, in the mask option register is logic 0, the sim treats the stop instruction as an illegal opcode and causes an illegal opcode reset. the sim actively pulls down the rst pin for all internal reset sources. 7.5.2.4 illegal address reset an opcode fetch from an unmapped address generates an illegal address reset. the sim verifies that the cpu is fetching an opcode prior to asserting the ilad bit in the sim reset status register (srsr) and resetting the mcu. a data fetch from an unmapped address does not generate a reset. the sim actively pulls down the rst pin for all internal reset sources. 7.5.2.5 low-voltage inhibit (lvi) reset the lvi asserts its output to the sim when the v dd voltage falls to the lvi trip voltage v trip . the lvi bit in the sim reset status register (srsr) is set, and the external reset pin (rst ) is held low while the sim counter counts out 4096 busclkx4 cycles. sixty-four busclkx4 cycles later, the cpu and memories are released from reset to allow the reset vector sequence to occur. the sim actively pulls down the (rst ) pin for all internal reset sources.
system integration module (sim) sim counter mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola system integration module (sim) 85 non-disclosure agreement required 7.6 sim counter the sim counter is used by the power-on reset module (por) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (ibus) clocks. the sim counter also serves as a prescaler for the computer operating properly module (cop). the sim counter uses 12 stages for counting, followed by a 13th stage that triggers a reset of sim counters and supplies the clock for the cop module. the sim counter is clocked by the falling edge of busclkx4. 7.6.1 sim counter during power-on reset the power-on reset module (por) detects power applied to the mcu. at power-on, the por circuit asserts the signal porrst. once the sim is initialized, it enables the oscillator to drive the bus clock state machine. 7.6.2 sim counter during stop mode recovery the sim counter also is used for stop mode recovery. the stop instruction clears the sim counter. after an interrupt, break, or reset, the sim senses the state of the short stop recovery bit, ssrec, in the configuration register 1 (config1). if the ssrec bit is a logic 1, then the stop recovery is reduced from the normal delay of 4096 busclkx4 cycles down to 32 busclkx4 cycles. this is ideal for applications using canned oscillators that do not require long start-up times from stop mode. external crystal applications should use the full stop recovery time, that is, with ssrec cleared in the configuration register 1 (config1). 7.6.3 sim counter and reset states external reset has no effect on the sim counter (see 7.8.2 stop mode for details.) the sim counter is free-running after all reset states. see 7.5.2 active resets from internal sources for counter control and internal reset recovery sequences.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 86 system integration module (sim) motorola system integration module (sim) non-disclosure agreement required 7.7 exception control normal sequential program execution can be changed in three different ways: 1. interrupts a. maskable hardware cpu interrupts b. non-maskable software interrupt instruction (swi) 2. reset 3. break interrupts 7.7.1 interrupts an interrupt temporarily changes the sequence of program execution to respond to a particular event. figure 7-8 flow charts the handling of system interrupts. interrupts are latched, and arbitration is performed in the sim at the start of interrupt processing. the arbitration result is a constant that the cpu uses to determine which vector to fetch. once an interrupt is latched by the sim, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the i bit is cleared). at the beginning of an interrupt, the cpu saves the cpu register contents on the stack and sets the interrupt mask (i bit) to prevent additional interrupts. at the end of an interrupt, the rti instruction recovers the cpu register contents from the stack so that normal processing can resume. figure 7-9 shows interrupt entry timing. figure 7-10 shows interrupt recovery timing.
system integration module (sim) exception control mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola system integration module (sim) 87 non-disclosure agreement required figure 7-8. interrupt processing no no no yes no no yes no yes yes (as many interrupts as exist on chip) i bit set? from reset break interrupt? i bit set? irq interrupt? timer interrupt? swi instruction? rti instruction? fetch next instruction unstack cpu registers execute instruction yes yes stack cpu registers set i bit load pc with interrupt vector
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 88 system integration module (sim) motorola system integration module (sim) non-disclosure agreement required figure 7-9 . interrupt entry figure 7-10. interrupt recovery 7.7.1.1 hardware interrupts a hardware interrupt does not stop the current instruction. processing of a hardware interrupt begins after completion of the current instruction. when the current instruction is complete, the sim checks all pending hardware interrupts. if interrupts are not masked (i bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the sim proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. if more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. figure 7-11 demonstrates what happens when two interrupts are pending. if an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the lda instruction is executed. module data bus r/w interrupt dummy sp sp ? 1 sp ? 2 sp ? 3 sp ? 4 vect h vect l start addr address bus dummy pc ? 1[7:0] pc ? 1[15:8] x a ccr v data h v data l opcode i bit module data bus r/w interrupt sp ? 4 sp ? 3 sp ? 2 sp ? 1 sp pc pc + 1 address bus ccr a x pc ? 1[7:0] pc ? 1[15:8] opcode operand i bit
system integration module (sim) exception control mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola system integration module (sim) 89 non-disclosure agreement required figure 7-11 . interrupt recognition example the lda opcode is prefetched by both the int1 and int2 return-from-interrupt (rti) instructions. however, in the case of the int1 rti prefetch, this is a redundant operation. note: to maintain compatibility with the m6805 family , the h register is not pushed on the stack during interrupt entry. if the interrupt service routine modifies the h register or uses the indexed addressing mode, software should save the h register and then restore it prior to exiting the routine. 7.7.1.2 swi instruction the swi instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (i bit) in the condition code register. note: a software interrupt pushes pc onto the stack. a software interrupt does not push pc ? 1, as a hardware interrupt does. cli lda int1 pulh rti int2 background routine #$ff pshh int1 interrupt service routine pulh rti pshh int2 interrupt service routine
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 90 system integration module (sim) motorola system integration module (sim) non-disclosure agreement required 7.7.2 interrupt status registers the flags in the interrupt status registers identify maskable interrupt sources. table 7-3 summarizes the interrupt sources and the interrupt status register flags that they set. the interrupt status registers can be useful for debugging. table 7-3. interrupt sources priority source flag mask (1) 1. the i bit in the condition code register is a global mask for all interrupt sources except the swi instruction. int register flag vector address highest lowest reset ?? ? $fffe ? $ffff swi instruction ?? ? $fffc ? $fffd irq pin irqf1 imask1 if1 $fffa ? $fffb timer channel 0 interrupt ch0f ch0ie if3 $fff6 ? $fff7 timer channel 1 interrupt ch1f ch1ie if4 $fff4 ? $fff5 timer overflow interrupt tof toie if5 $fff2 ? $fff3 keyboard interrupt keyf imaskk if14 $ffde ? $ffdf adc conversion complete interrupt coco aien if15 $ffe0 ? $ffe1
system integration module (sim) exception control mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola system integration module (sim) 91 non-disclosure agreement required 7.7.2.1 interrupt status register 1 if1 and if3 ? if5 ? interrupt flags these flags indicate the presence of interrupt requests from the sources shown in table 7-3 . 1 = interrupt request present 0 = no interrupt request present bit 0, 1, 3, and 7 ? always read 0 7.7.2.2 interrupt status register 2 i f 14 ? interrupt flags this flag indicates the presence of interrupt requests from the sources shown in table 7-3 . 1 = interrupt request present 0 = no interrupt request present bit 0 ? 6 ? always read 0 address: $fe04 bit 7654321bit 0 read: 0 if5 if4 if3 0 if1 0 0 write:rrrrrrrr reset:00000000 r= reserved figure 7-12. interrupt status register 1 (int1) address: $fe05 bit 7654321bit 0 read: if14 0 000000 write:rrrrrrrr reset:00000000 r= reserved figure 7-13. interrupt status register 2 (int2)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 92 system integration module (sim) motorola system integration module (sim) non-disclosure agreement required 7.7.2.3 interrupt status register 3 if15 ? interrupt flags these flags indicate the presence of interrupt requests from the sources shown in table 7-3 . 1 = interrupt request present 0 = no interrupt request present bit 1 ? 7 ? always read 0 7.7.3 reset all reset sources always have equal and highest priority and cannot be arbitrated. 7.7.4 break interrupts the break module can stop normal program flow at a software programmable break point by asserting its break interrupt output. (see section 17. break module (break) .) the sim puts the cpu into the break state by forcing it to the swi vector location. refer to the break interrupt subsection of each module to see how each module is affected by the break state. address: $fe06 bit 7654321bit 0 read: 0 0 00000if15 write:rrrrrrrr reset:00000000 r= reserved figure 7-14. interrupt status register 3 (int3)
system integration module (sim) low-power modes mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola system integration module (sim) 93 non-disclosure agreement required 7.7.5 status flag protection in break mode the sim controls whether status flags contained in other modules can be cleared during break mode. the user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (bcfe) in the break flag control register (bfcr). protecting flags in break mode ensures that set flags will not be cleared while in break mode. this protection allows registers to be freely read and written during break mode without losing status flag information. setting the bcfe bit enables the clearing mechanisms. once cleared in break mode, a flag remains cleared even when break mode is exited. status flags with a two-step clearing mechanism ? for example, a read of one register followed by the read or write of another ? are protected, even when the first step is accomplished prior to entering break mode. upon leaving break mode, execution of the second step will clear the flag as normal. 7.8 low-power modes executing the wait or stop instruction puts the mcu in a low power-consumption mode for standby situations. the sim holds the cpu in a non-clocked state. the operation of each of these modes is described below. both stop and wait clear the interrupt mask (i) in the condition code register, allowing interrupts to occur. 7.8.1 wait mode in wait mode, the cpu clocks are inactive while the peripheral clocks continue to run. figure 7-15 shows the timing for wait mode entry. figure 7-15. wait mode entry timing wait addr + 1 same same address bus data bus previous data next opcode same wait addr same r/w note: previous data can be operand data or the wait opcode, depending on the last instruction.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 94 system integration module (sim) motorola system integration module (sim) non-disclosure agreement required a module that is active during wait mode can wake up the cpu with an interrupt if the interrupt is enabled. stacking for the interrupt begins one cycle after the wait instruction during which the interrupt occurred. in wait mode, the cpu clocks are inactive. refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. some modules can be programmed to be active in wait mode. wait mode can also be exited by a reset or break. a break interrupt during wait mode sets the sim break stop/wait bit, sbsw, in the break status register (bsr). if the cop disable bit, copd, in the configuration register is logic 0, then the computer operating properly module (cop) is enabled and remains active in wait mode. figure 7-16 and figure 7-17 show the timing for wait recovery. figure 7-16. wait recovery from interrupt or break figure 7-17. wait recovery from internal reset $6e0c $6e0b $00ff $00fe $00fd $00fc $a6 $a6 $01 $0b $6e $a6 address bus data bus exitstopwait note: exitstopwait = rst pin or cpu interrupt or break interrupt address bus data bus rst $a6 $a6 $6e0b rst vct h rst vct l $a6 busclkx4 32 cycles 32 cycles
system integration module (sim) low-power modes mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola system integration module (sim) 95 non-disclosure agreement required 7.8.2 stop mode in stop mode, the sim counter is reset and the system clocks are disabled. an interrupt request from a module can cause an exit from stop mode. stacking for interrupts begins after the selected stop recovery time has elapsed. reset or break also causes an exit from stop mode. the sim disables the oscillator signals (busclkx2 and busclkx4) in stop mode, stopping the cpu and peripherals. stop recovery time is selectable using the ssrec bit in the configuration register 1 (config1). if ssrec is set, stop recovery is reduced from the normal delay of 4096 busclkx4 cycles down to 32. this is ideal for the internal oscillator, rc oscillator, and external oscillator options which do not require long start-up times from stop mode. note: external crystal applications should use the full stop recovery time by clearing the ssrec bit. the sim counter is held in reset from the execution of the stop instruction until the beginning of stop recovery. it is then used to time the recovery period. figure 7-18 shows stop mode entry timing and figure 7-19 shows the stop mode recovery time from interrupt or break note: to minimize stop current, all pins configured as inputs should be driven to a logic 1 or logic 0. figure 7-18. stop mode entry timing stop addr + 1 same same address bus data bus previous data next opcode same stop addr same r/w cpustop note: previous data can be operand data or the stop opcode, depending on the last instruction.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 96 system integration module (sim) motorola system integration module (sim) non-disclosure agreement required figure 7-19. stop mode recovery from interrupt 7.9 sim registers the sim has three memory mapped registers. table 7-4 shows the mapping of these registers. 7.9.1 sim reset status register this register contains seven flags that show the source of the last reset. clear the sim reset status register by reading it. a power-on reset sets the por bit and clears all other bits in the register. busclkx4 interrupt address bus stop + 2 stop + 2 sp sp ? 1 sp ? 2 sp ? 3 stop +1 stop recovery period table 7-4. sim registers address register access mode $fe00 bsr user $fe01 srsr user $fe03 bfcr user address: $fe01 bit 7654321bit 0 read: por pin cop ilop ilad modrst lvi 0 write: por:10000000 = unimplemented figure 7-20. sim reset status register (srsr)
system integration module (sim) sim registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola system integration module (sim) 97 non-disclosure agreement required por ? power-on reset bit 1 = last reset caused by por circuit 0 = read of srsr pin ? external reset bit 1 = last reset caused by external reset pin (rst ) 0 = por or read of srsr cop ? computer operating properly reset bit 1 = last reset caused by cop counter 0 = por or read of srsr ilop ? illegal opcode reset bit 1 = last reset caused by an illegal opcode 0 = por or read of srsr ilad ? illegal address reset bit (opcode fetches only) 1 = last reset caused by an opcode fetch from an illegal address 0 = por or read of srsr modrst ? monitor mode entry module reset bit 1 = last reset caused by monitor mode entry when vector locations $fffe and $ffff are $ff after por while irqb = v dd 0 = por or read of srsr lvi ? low voltage inhibit reset bit 1 = last reset caused by lvi circuit 0 = por or read of srsr
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 98 system integration module (sim) motorola system integration module (sim) non-disclosure agreement required 7.9.2 break flag control register the break control register (bfcr) contains a bit that enables software to clear status bits while the mcu is in a break state. bcfe ? break clear flag enable bit this read/write bit enables software to clear status bits by accessing status registers while the mcu is in a break state. to clear status bits during the break state, the bcfe bit must be set. 1 = status bits clearable during break 0 = status bits not clearable during break address: $fe03 bit 7654321bit 0 read: bcferrrrrrr write: reset: 0 r= reserved figure 7-21. break flag control register (bfcr)
system integration module (sim) sim registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola system integration module (sim) 99 non-disclosure agreement required 7.9.3 break status register the break status register (bsr) contains a flag to indicate that a break caused an exit from wait mode. this register is only used in emulation mode. sbsw ? sim break stop/wait this status bit is useful in applications requiring a return to wait mode after exiting from a break interrupt. clear sbsw by writing a logic 0 to it. reset clears sbsw. 1 = wait mode was exited by break interrupt 0 = wait mode was not exited by break interrupt sbsw can be read within the break state swi routine. the user can modify the return address on the stack by subtracting one from it. address: $fe00 bit 7654321bit 0 read: rrrrrr sbsw r write: note 1 reset: 0 r = reserved 1. writing a logic 0 clears sbsw. figure 7-22. break status register (bsr)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 100 system integration module (sim) motorola system integration module (sim) non-disclosure agreement required
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola oscillator module (osc) 101 non-disclosure agreement required data sheet ? mc68hc908qy4 section 8. oscillator module (osc) 8.1 contents 8.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 8.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 8.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 8.4.1 internal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1.1 internal oscillator trimming . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1.2 internal to external clock switching. . . . . . . . . . . . . . . .104 8.4.2 external oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.4.3 xtal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.4.4 rc oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8.5 oscillator module signals . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 8.5.1 crystal amplifier input pin (osc1) . . . . . . . . . . . . . . . . . . .107 8.5.2 crystal amplifier output pin (osc2/pta4/busclkx4) . .108 8.5.3 oscillator enable signal (simoscen). . . . . . . . . . . . . . . . 108 8.5.4 xtal oscillator clock (xtalclk) . . . . . . . . . . . . . . . . . . .108 8.5.5 rc oscillator clock (rcclk). . . . . . . . . . . . . . . . . . . . . . .109 8.5.6 internal oscillator clock (intclk) . . . . . . . . . . . . . . . . . . .109 8.5.7 oscillator out 2 (busclkx4) . . . . . . . . . . . . . . . . . . . . . . 109 8.5.8 oscillator out (busclkx2) . . . . . . . . . . . . . . . . . . . . . . . . 109 8.6 low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 8.6.1 wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.6.2 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.7 oscillator during break mode. . . . . . . . . . . . . . . . . . . . . . . . . 110 8.8 config2 options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.9 input/output (i/o) registers . . . . . . . . . . . . . . . . . . . . . . . . . .111 8.9.1 oscillator status register. . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.9.2 oscillator trim register (osctrim) . . . . . . . . . . . . . . . . . 112
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 102 oscillator module (osc) motorola oscillator module (osc) non-disclosure agreement required 8.2 introduction the oscillator module is used to provide a stable clock source for the microcontroller system and bus. the oscillator module generates two output clocks, busclkx2 and busclkx4. the busclkx4 clock is used by the system integration module (sim) and the computer operating properly module (cop). the busclkx2 clock is divided by two in the sim to be used as the bus clock for the microcontroller. therefore the bus frequency will be one forth of the busclkx4 frequency. 8.3 features the oscillator has these four clock source options available: 1. internal oscillator: an internally generated, fixed frequency clock, trimmable to 5% . this is the default option out of reset. 2. external oscillator: an external clock that can be driven directly into osc1. 3. external rc: a built-in oscillator module (rc oscillator) that requires an external r connection only. the capacitor is internal to the chip. 4. external crystal: a built-in oscillator module (xtal oscillator) that requires an external crystal or ceramic-resonator. 8.4 functional description the oscillator contains these major subsystems:  internal oscillator circuit  internal or external clock switch control  external clock circuit  external crystal circuit  external rc clock circuit
oscillator module (osc) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola oscillator module (osc) 103 non-disclosure agreement required 8.4.1 internal oscillator the internal oscillator circuit is designed for use with no external components to provide a clock source with tolerance less than 25% untrimmed. an 8-bit trimming register allows the adjust to a tolerance of less than 5%. the internal oscillator will generate a clock of 12.8 mhz typical (intclk) resulting in a bus speed (internal clock 4) of 3.2 mhz. 3.2 mhz came from the maximum bus speed guaranteed at 3 v which is 4 mhz. since the internal oscillator will have a 25% tolerance (pre-trim), then the +25% case should not allow a frequency higher than 4 mhz: 3.2 mhz + 25% = 4 mhz figure 8-2 shows how busclkx4 is derived from intclk and, like the rc oscillator, osc2 can output busclkx4 by setting osc2en in ptapue register. see section 12. input/output (i/o) ports . 8.4.1.1 internal oscillator trimming the 8-bit trimming register, osctrim, allows a clock period adjust of +127 and ? 128 steps. increasing osctrim value increases the clock period. trimming will allow the internal clock frequency value fit in a 5% range around12.8 mhz. there ? s an option to order a trimmed version of mc68hc908qy4. the trimming value will be provided in a known flash location, $ffc0. so that the user would be able to copy this byte from the flash to the osctrim register right at the beginning of assembly code. reset loads osctrim with a default value of $80.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 104 oscillator module (osc) motorola oscillator module (osc) non-disclosure agreement required 8.4.1.2 internal to external clock switching when external clock source (external osc, rc, or xtal) is desired, the user must perform the following steps: 1. for external crystal circuits only, oscopt[1:0] = 1:1: to help precharge an external crystal oscillator, set pta4 (osc2) as an output and drive high for several cycles. this may help the crystal circuit start more robustly. 2. set config2 bits oscopt[1:0] according to table 8-2 . the oscillator module control logic will then set osc1 as an external clock input and, if the external crystal option is selected, osc2 will also be set as the clock output. 3. create a software delay to wait the stabilization time needed for the selected clock source (crystal, resonator, rc) as recommended by the component manufacturer. a good rule of thumb for crystal oscillators is to wait 4096 cycles of the crystal frequency, i.e., for a 4-mhz crystal, wait approximately 1 msec. 4. after the manufacturer ? s recommended delay has elapsed, the ecgon bit in the osc status register (oscstat) needs to be set by the user software. 5. after ecgon set is detected, the osc module checks for oscillator activity by waiting two external clock rising edges. 6. the osc module then switches to the external clock. logic provides a glitch free transition. 7. the osc module first sets the ecgst bit in the oscstat register and then stops the internal oscillator. note: once transition to the external clock is done, the internal oscillator will only be reactivated with reset. no post-switch clock monitor feature is implemented (clock does not switch back to internal if external clock dies).
oscillator module (osc) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola oscillator module (osc) 105 non-disclosure agreement required 8.4.2 external oscillator the external clock option is designed for use when a clock signal is available in the application to provide a clock source to the microcontroller. the osc1 pin is enabled as an input by the oscillator module. the clock signal is used directly to create busclkx4 and also divided by two to create busclkx2. in this configuration, the osc2 pin cannot output busclkx4. so the osc2en bit in the port a pullup enable register will be clear to enable pta4 i/o functions on the pin. 8.4.3 xtal oscillator the xtal oscillator circuit is designed for use with an external crystal or ceramic resonator to provide an accurate clock source. in this configuration, the osc2 pin is dedicated to the external crystal circuit. the osc2en bit in the port a pullup enable register has no effect when this clock mode is selected. in its typical configuration, the xtal oscillator is connected in a pierce oscillator configuration, as shown in figure 8-1 . this figure shows only the logical representation of the internal components and may not represent actual circuitry. the oscillator configuration uses five components:  crystal, x 1  fixed capacitor, c 1  tuning capacitor, c 2 (can also be a fixed capacitor)  feedback resistor, r b  series resistor, r s (optional) note: the series resistor (r s ) is included in the diagram to follow strict pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. refer to the crystal manufacturer ? s data for more information.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 106 oscillator module (osc) motorola oscillator module (osc) non-disclosure agreement required figure 8-1. xtal oscillator external connections 8.4.4 rc oscillator the rc oscillator circuit is designed for use with external r to provide a clock source with tolerance less than 25%. in its typical configuration, the rc oscillator requires two external components, one r and one c. in the mc68hc908qy4, the capacitor is internal to the chip. the r value should have a tolerance of 1% or less, to obtain a clock source with less than 25% tolerance. the oscillator configuration uses one component, r ext . in this configuration, the osc2 pin can be left in the reset state as pta4. or, the osc2en bit in the port a pullup enable register can be set to enable the osc2 function on the pin without affecting the clocks. c 1 c 2 simoscen xtalclk r b x 1 r s (1) mcu from sim osc2 osc1 2 busclkx2 busclkx4 to sim to sim note 1. r s can be zero (shorted) when used with higher-frequency crystals. refer to manufacturer ? s data. see section 18. electrical specifications for component value requirements.
oscillator module (osc) oscillator module signals mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola oscillator module (osc) 107 non-disclosure agreement required figure 8-2. rc oscillator external connections 8.5 oscillator module signals the following paragraphs describe the signals that are inputs to and outputs from the oscillator module. 8.5.1 crystal amplifier input pin (osc1) the osc1 pin is either an input to the crystal oscillator amplifier, an input to the rc oscillator circuit, or an external clock source. for the internal oscillator configuration, the osc1 pin can assume other functions according to table 1-3. function priority in shared pins . mcu r ext simoscen osc1 external rc oscillator en rcclk 2 busclkx2 busclkx4 to sim from sim v dd pta4 i/o 1 0 pta4 osc2en pta4/busclkx4 (osc2) to sim see section 18. electrical specifications for component value requirements. 0 1 intclk oscrcopt
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 108 oscillator module (osc) motorola oscillator module (osc) non-disclosure agreement required 8.5.2 crystal amplifier output pin (osc2/pta4/busclkx4) for the xtal oscillator device , the osc2 pin is the crystal oscillator inverting amplifier output. for the external clock option, the osc2 pin is dedicated to the pta4 i/o function. the osc2en bit has no effect. for the internal oscillator or rc oscillator options, the osc2 pin can assume other functions according to table 1-3. function priority in shared pins , or the output of the oscillator clock (busclkx4). 8.5.3 oscillator enable signal (simoscen) the simoscen signal comes from the system integration module (sim) and enables/disables either the xtal oscillator circuit, the rc oscillator, or the internal oscillator. 8.5.4 xtal oscillator clock (xtalclk) xtalclk is the xtal oscillator output signal. it runs at the full speed of the crystal (f xclk ) and comes directly from the crystal oscillator circuit. figure 8-1 shows only the logical relation of xtalclk to osc1 and osc2 and may not represent the actual circuitry. the duty cycle of xtalclk is unknown and may depend on the crystal and other external factors. also, the frequency and amplitude of xtalclk can be unstable at start up. table 8-1. osc2 pin function option osc2 pin function xtal oscillator inverting osc1 external clock pta4 i/o internal oscillator or rc oscillator controlled by osc2en bit in ptapue register osc2en = 0: pta4 i/o osc2en = 1: busclkx4 output
oscillator module (osc) low power modes mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola oscillator module (osc) 109 non-disclosure agreement required 8.5.5 rc oscillator clock (rcclk) rcclk is the rc oscillator output signal. its frequency is directly proportional to the time constant of external r and internal c. figure 8-2 shows only the logical relation of rcclk to osc1 and may not represent the actual circuitry. 8.5.6 internal oscillator clock (intclk) intclk is the internal oscillator output signal. its nominal frequency is fixed to 12.8 mhz, but it can be also trimmed using the oscillator trimming feature of the osctrim register (see 8.4.1.1 internal oscillator trimming ). 8.5.7 oscillator out 2 (busclkx4) busclkx4 is the same as the input clock (xtalclk, rcclk, or intclk). this signal is driven to the sim module and is used to determine the cop cycles. 8.5.8 oscillator out (busclkx2) the frequency of this signal is equal to half of the busclkx4, this signal is driven to the sim for generation of the bus clocks used by the cpu and other modules on the mcu. busclkx2 will be divided again in the sim and results in the internal bus frequency being one fourth of either the xtalclk, rcclk, or intclk frequency. 8.6 low power modes the wait and stop instructions put the mcu in low-power consumption standby modes.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 110 oscillator module (osc) motorola oscillator module (osc) non-disclosure agreement required 8.6.1 wait mode the wait instruction has no effect on the oscillator logic. busclkx2 and busclkx4 continue to drive to the sim module. 8.6.2 stop mode the stop instruction disables either the xtalclk, the rcclk, or intclk output, hence busclkx2 and busclkx4. 8.7 oscillator during break mode the oscillator continues to drive busclkx2 and busclkx4 when the device enters the break state. 8.8 config2 options two config2 register options affect the operation of the oscillator module: oscopt1 and oscopt0. all config2 register bits will have a default configuration. refer to section 5. configuration register (config) for more information on how the config2 register is used. table 8-2 shows how the oscopt bits are used to select the oscillator clock source. table 8-2 . oscillator modes oscopt1 oscopt0 oscillator modes 0 0 internal oscillator 0 1 external oscillator 1 0 external rc 1 1 external crystal
oscillator module (osc) input/output (i/o) registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola oscillator module (osc) 111 non-disclosure agreement required 8.9 input/output (i/o) registers the oscillator module contains these two registers: 1. oscillator status register (oscstat) 2. oscillator trim register (osctrim) 8.9.1 oscillator status register the oscillator status register (oscstat) contains the bits for switching from internal to external clock sources ecgon ? external clock generator on bit this read/write bit enables external clock generator, so that the switching process can be initiated. this bit is forced low during reset. this bit is ignored in monitor mode with the internal oscillator bypassed, ptm or ctm mode. 1 = external clock generator enabled 0 = external clock generator disabled ecgst ? external clock status bit this read-only bit indicates whether or not an external clock source is engaged to drive the system clock. 1 = an external clock source engaged 0 = an external clock source disengaged address: $0036 bit 7654321bit 0 read: rrrrrr ecgon ecgst write: reset: 0 0 0 00 000 r=reserved figure 8-3. oscillator status register (oscstat)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 112 oscillator module (osc) motorola oscillator module (osc) non-disclosure agreement required 8.9.2 oscillator trim register (osctrim) trim7 ? trim0 ? internal oscillator trim factor bits these read/write bits change the size of the internal capacitor used by the internal oscillator. by measuring the period of the internal clock and adjusting this factor accordingly, the frequency of the internal clock can be fine tuned. increasing (decreasing) this factor by one increases (decreases) the period by appoximately 0.2% of the untrimmed period (the period for trim = $80). the trimmed frequency is guaranteed not to vary by more than 5% over the full specified range of temperature and voltage. the reset value is $80, which sets the frequency to 12.8 mhz (3.2 mhz bus speed) 25%. address: $0038 bit 7654321bit 0 read: trim7 trim6 trim5 trim4 trim3 trim2 trim71 trim0 write: reset:10000000 figure 8-4. oscillator trim register (osctrim)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola monitor rom (mon) 113 non-disclosure agreement required data sheet ? mc68hc908qy4 section 9. monitor rom (mon) 9.1 contents 9.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 9.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 9.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 9.4.1 forced monitor mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 9.4.2 v tst monitor mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 9.4.3 data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 9.4.4 break signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 9.4.5 baud rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 9.4.6 commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 9.5 security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 9.2 introduction this section describes the monitor read-only memory (mon) and the monitor mode entry methods. the monitor rom allows complete testing of the microcontroller unit (mcu) through a single-wire interface with a host computer. monitor mode entry can be achieved without use of the higher test voltage, v tst , as long as vector addresses $fffe and $ffff are blank, thus reducing the hardware requirements for in-circuit programming.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 114 monitor rom (mon) motorola monitor rom (mon) non-disclosure agreement required 9.3 features features of the monitor rom include:  normal user-mode pin functionality on most pins  one pin dedicated to serial communication between monitor read-only memory (rom) and host computer  standard mark/space non-return-to-zero (nrz) communication with host computer  execution of code in random-access memory (ram) or flash  flash memory security feature (1)  flash memory programming interface  use of external 9.83 mhz crystal or clock to generate internal frequency of 2.4576 mhz  simple internal oscillator mode of operation (no external clock or high voltage)  574 bytes monitor rom code size  monitor mode entry without high voltage, v tst , if reset vector is blank ($fffe and $ffff contain $ff)  standard monitor mode entry if high voltage is applied to irq 9.4 functional description the monitor rom receives and executes commands from a host computer. figure 9-1 , figure 9-2 , and figure 9-3 show example circuits used to enter monitor mode and communicate with a host computer via a standard rs-232 interface. simple monitor commands can access any memory address. in monitor mode, the mcu can execute code downloaded into ram by a host computer while most mcu pins retain normal operating mode functions. all communication between the host computer and the mcu is through 1. no security feature is absolutely secure. however, motorola ? s strategy is to make reading or copying the flash difficult for unauthorized users.
monitor rom (mon) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola monitor rom (mon) 115 non-disclosure agreement required the pta0 pin. a level-shifting and multiplexing interface is required between pta0 and the host computer. pta0 is used in a wired-or configuration and requires a pullup resistor. the monitor code has been updated from previous versions of the monitor code to allow enabling the internal oscillator to generate the internal clock. this addition, which is enabled when irq is held low out of reset, is intended to support serial communication/programming at 9600 baud in monitor mode by using the internal oscillator, and the internal oscillator user trim value osctrim (flash location $ffc0, if programmed) to generate the desired internal frequency (3.2 mhz). since this feature is enabled only when irq is held low out of reset, it cannot be used when the reset vector is programmed (i.e., the value is not $ffff) because entry into monitor mode in this case requires v tst on irq . the irq pin must remain low during this monitor session in order to maintain communication. table 9-1 shows the pin conditions for entering monitor mode. as specified in the table, monitor mode may be entered after a power-on reset (por) and will allow communication at 9600 baud provided one of the following sets of conditions is met:  if $fffe and $ffff does not contain $ff (programmed state): ? the external clock is 9.8304 mhz ? irq = v tst  if $fffe and $ffff contain $ff (erased state): ? the external clock is 9.8304 mhz ? irq = v dd (this can be implemented through the internal irq pullup)  if $fffe and $ffff contain $ff (erased state): ? irq = v ss (internal oscillator is selected, no external clock required)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 116 monitor rom (mon) motorola monitor rom (mon) non-disclosure agreement required figure 9-1. monitor mode circuit (external clock, no high voltage) figure 9-2. monitor mode circuit (internal clock, no high voltage) rst (pta3) irq (pta2) pta0 osc1 (pta5) 8 7 db9 2 3 5 16 15 2 6 10 9 v dd 1 f max232 v+ v ? v dd 1 f + 1 2 3 4 5 6 74hc125 74hc125 10 k ? n.c. pta1 n.c. pta4 v ss 0.1 f v dd 9.8304 mhz clock c1+ c1 ? 5 4 1 f c2+ c2 ? + 3 1 1 f + + + 1 f v dd 10 k ? * * value not critical n.c. rst (pta3) irq (pta2) pta0 10 k ? * osc1 (pta5) n.c. 8 7 db9 2 3 5 16 15 2 6 10 9 v dd 1 f max232 c1+ c1 ? v+ v ? 5 4 1 f c2+ c2 ? v dd 1 f + 1 2 3 4 5 6 74hc125 74hc125 10 k ? n.c. pta1 n.c. pta4 v ss 0.1 f v dd + 3 1 1 f + + + 1 f v dd * value not critical n.c.
monitor rom (mon) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola monitor rom (mon) 117 non-disclosure agreement required figure 9-3. monitor mode circuit (external clock, with high voltage) 9.8304 mhz clock + 10 k ? * v dd 10 k ? * rst (pta3) irq (pta2) pta0 0.1 f osc1 (pta5) 8 7 db9 2 3 5 16 15 2 6 10 9 v dd max232 v+ v ? 1 f + 1 2 3 4 5 6 74hc125 74hc125 10 k ? pta1 pta4 v ss 0.1 f v dd 1 k ? 9.1 v c1+ c1 ? 5 4 1 f c2+ c2 ? + 3 1 1 f + 1 f v dd + 1 f v tst * value not critical v dd v dd 10 k ? * table 9-1. monitor mode signal requirements and options mode irq rst $fffe/ $ffff pta1 pta4 external clock (mhz) bus frequency (mhz) cop comment v tst monitor mode v tst v dd x 1 0 9.8304 2.4576 disabled pta1 and pta4 voltages are required. rst and osc1 functions are active forced monitor mode v dd x $ff (blank) x x 9.8304 2.4576 disabled osc1 function is active. rst and irq only available if later configured. forced monitor mode v ss x $ff (blank) xx x 3.2disabled rst , irq , and osc1 only available if later configured. user mode v dd or v ss x not $ff (programmed) xx x ? enabled enters user mode rst pin only available if later configured
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 118 monitor rom (mon) motorola monitor rom (mon) non-disclosure agreement required if entering monitor mode without high voltage on irq (above condition set 2 or 3, where applied voltage is v dd or v ss ), then startup port pin requirements and conditions, (pta1/pta4) are not in effect. this is to reduce circuit requirements when performing in-circuit programming. note: if the reset vector is blank and monitor mode is entered, the chip will see an additional reset cycle after the initial power-on reset (por). once the part has been programmed, the traditional method of applying a voltage, v tst , to irq must be used to enter monitor mode. the computer operating properly (cop) module is disabled in monitor mode based on these conditions:  if monitor mode was entered as a result of the reset vector being blank (above condition set 2 or 3), the cop is always disabled regardless of the state of irq .  if monitor mode was entered with v tst on irq (condition set 1), then the cop is disabled as long as v tst is applied to irq . note: the pta0 pin must be at logic 1 (pullup) during chip power up to enter monitor mode properly. figure 9-4 shows a simplified diagram of the monitor mode entry when the reset vector is blank and just 1 x v dd voltage is applied to the irq pin. an external oscillator of 9.8304 mhz is required for a baud rate of 9600, as the internal bus frequency is automatically set to the external frequency divided by four. no external clock is required if irq = 0 since chip clock will be drive by internal clock generator. enter monitor mode with pin configuration shown in figure 9-1 by pulling rst low and then high. the rising edge of rst latches monitor mode. once monitor mode is latched, the values on the specified pins can change. once out of reset, the mcu waits for the host to send eight security bytes (see 9.5 security ). after the security bytes, the mcu sends a break signal (10 consecutive logic 0s) to the host, indicating that it is ready to receive a command.
monitor rom (mon) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola monitor rom (mon) 119 non-disclosure agreement required figure 9-4. low-voltage monitor mode entry flowchart 9.4.1 forced monitor mode if the voltage applied to the irq is less than v tst , the mcu will come out of reset in user mode. the menrst module monitors the reset vector fetches and will assert an internal reset if it detects that the reset vectors are erased ($ff). when the mcu comes out of reset, it is forced into monitor mode without requiring high voltage on the irq pin. once out of reset, the monitor code is initially executing off the internal clock at its default frequency. if irq is tied high, all pins will default to regular input port functions except for pta0 and pta5 which will operate as a serial communication port and osc1 input respectively (refer to figure 9-1 ). that will allow the clock to be driven from an external source through osc1 pin. if irq is tied low, all pins will default to regular input port function except for pta0 which will operate as serial communication port. refer to figure 9-2 . regardless of the state of the irq pin, it will not function as a port input pin in monitor mode. bit 2 of the port a data register will always read 0. is vector blank? por triggered? normal user mode monitor mode execute monitor code no no yes yes por reset
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 120 monitor rom (mon) motorola monitor rom (mon) non-disclosure agreement required the bih and bil instructions will behave as if the irq pin is enabled, regardless of the settings in the configuration register. see section 5. configuration register (config) . the cop module is disabled in forced monitor mode. any reset other than a power-on reset (por) will automatically force the mcu to come back to the forced monitor mode. in monitor mode, the mcu uses different vectors for reset, swi (software interrupt), and break interrupt than those for user mode. the alternate vectors are in the $fe page instead of the $ff page and allow code execution from the internal monitor firmware instead of user code. note: exiting monitor mode after it has been initiated by having a blank reset vector requires a power-on reset (por). pulling rst (when rst pin available) low will not exit monitor mode in this situation. table 9-2 summarizes the differences between user mode and monitor mode regarding vectors. 9.4.2 v tst monitor mode rst and osc1 functions will be active on the pta3 and pta5 pins respectively as long as v tst is applied to irq pin. if the irq pin is lowered (no longer v tst ) then the chip will still be operating in monitor mode, but the pin functions will be determined by the settings in the configuration registers (see section 5. configuration register (config) ) when v tst was lowered, except for the irq pin. irq will not function as a port input pin in monitor mode. bit 2 of the port a data register will always read 0. the bih and bil instructions will behave as if the irq pin is enabled, regardless of the settings in the configuration registers. table 9-2. mode difference modes functions reset vector high reset vector low break vector high break vector low swi vector high swi vector low user $fffe $ffff $fffc $fffd $fffc $fffd monitor $fefe $feff $fefc $fefd $fefc $fefd
monitor rom (mon) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola monitor rom (mon) 121 non-disclosure agreement required 9.4.3 data format communication with the monitor rom is in standard non-return-to-zero (nrz) mark/space data format. transmit and receive baud rates must be identical. figure 9-5. monitor data format 9.4.4 break signal a start bit (logic 0) followed by nine logic 0 bits is a break signal. when the monitor receives a break signal, it drives the pta0 pin high for the duration of two bits and then echoes back the break signal. figure 9-6. break transaction 9.4.5 baud rate the communication baud rate is controlled by the external frequency and the divide ratio is 1024. table 9-3 has the external frequency required to achieve a standard baud rate of 9600 bps. other standard baud rates can be accomplished using proportionally higher or lower frequency generators. if a crystal is used as the source, be aware of the upper frequency limit that the mcu can operate. bit 5 start bit bit 1 next stop bit start bit bit 2 bit 3 bit 4 bit 7 bit 0 bit 6 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 missing stop bit 2-stop bit delay before zero echo table 9-3. monitor baud rate selection external frequency irq internal frequency baud rate (bps) 9.8304 mhz v tst or v dd 2.4576 mhz 9600 ? v ss 3.2 mhz (trimmed) 9600
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 122 monitor rom (mon) motorola monitor rom (mon) non-disclosure agreement required 9.4.6 commands the monitor rom firmware uses these commands:  read (read memory)  write (write memory)  iread (indexed read)  iwrite (indexed write)  readsp (read stack pointer)  run (run user program) the monitor rom firmware echoes each received byte back to the pta0 pin for error checking. an 11-bit delay at the end of each command allows the host to send a break character to cancel the command. a delay of two bit times occurs before each echo and before read, iread, or readsp data is returned. the data returned by a read command appears after the echo of the last byte of the command. note: wait one bit time after each echo before sending the next byte. figure 9-7. read transaction figure 9-8. write transaction read read echo from host address high address high address low address low data return 13, 2 11 4 4 notes: 2 = data return delay, 2 bit times 3 = cancel command delay, 11 bit times 4 = wait 1 bit time before sending next byte. 44 1 = echo delay, 2 bit times write write echo from host address high address high address low address low data data notes: 2 = cancel command delay, 11 bit times 3 = wait 1 bit time before sending next byte. 11 3 11 3 3 32, 3 1 = echo delay, 2 bit times
monitor rom (mon) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola monitor rom (mon) 123 non-disclosure agreement required a brief description of each monitor mode command is given in table 9-4 through table 9-9 . table 9-4. read (read memory) command description read byte from memory operand 2-byte address in high-byte:low-byte order data returned returns contents of specified address opcode $4a command sequence read read echo sent to monitor address high address high address low data return address low
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 124 monitor rom (mon) motorola monitor rom (mon) non-disclosure agreement required table 9-5. write (write memory) command description write byte to memory operand 2-byte address in high-byte:low-byte order; low byte followed by data byte data returned none opcode $49 command sequence table 9-6. iread (indexed read) command description read next 2 bytes in memory from last address accessed operand 2-byte address in high byte:low byte order data returned returns contents of next two addresses opcode $1a command sequence write write echo from host address high address high address low address low data data iread iread echo from host data return data
monitor rom (mon) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola monitor rom (mon) 125 non-disclosure agreement required a sequence of iread or iwrite commands can access a block of memory sequentially over the full 64-kbyte memory map. table 9-7. iwrite (indexed write) command description write to last address accessed + 1 operand single data byte data returned none opcode $19 command sequence iwrite iwrite echo from host data data
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 126 monitor rom (mon) motorola monitor rom (mon) non-disclosure agreement required table 9-8. readsp (read stack pointer) command description reads stack pointer operand none data returned returns incremented stack pointer value (sp + 1) in high-byte:low-byte order opcode $0c command sequence table 9-9. run (run user program) command description executes pulh and rti instructions operand none data returned none opcode $28 command sequence readsp readsp echo from host sp return sp high low run run echo from host
monitor rom (mon) security mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola monitor rom (mon) 127 non-disclosure agreement required the mcu executes the swi and pshh instructions when it enters monitor mode. the run command tells the mcu to execute the pulh and rti instructions. before sending the run command, the host can modify the stacked cpu registers to prepare to run the host program. the readsp command returns the incremented stack pointer value, sp + 1. the high and low bytes of the program counter are at addresses sp+5 and sp+6. figure 9-9. stack pointer at monitor mode entry 9.5 security a security feature discourages unauthorized reading of flash locations while in monitor mode. the host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations $fff6 ? $fffd. locations $fff6 ? $fffd contain user-defined data. note: do not leave locations $fff6 ? $fffd blank. for security reasons, program locations $fff6 ? $fffd even if they are not used for vectors. during monitor mode entry, the mcu waits after the power-on reset for the host to send the eight security bytes on pin pta0. if the received bytes match those at locations $fff6 ? $fffd, the host bypasses the security feature and can read all flash locations and execute code from flash. security remains bypassed until a power-on reset occurs. if the reset was not a power-on reset, security remains bypassed and security code entry is not required. see figure 9-10 . condition code register accumulator low byte of index register high byte of program counter low byte of program counter sp + 1 sp + 2 sp + 3 sp + 4 sp + 5 sp sp + 6 high byte of index register sp + 7
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 128 monitor rom (mon) motorola monitor rom (mon) non-disclosure agreement required figure 9-10. monitor mode entry timing upon power-on reset, if the received bytes of the security code do not match the data at locations $fff6 ? $fffd, the host fails to bypass the security feature. the mcu remains in monitor mode, but reading a flash location returns an invalid value and trying to execute code from flash causes an illegal address reset. after receiving the eight security bytes from the host, the mcu transmits a break character, signifying that it is ready to receive a command. note: the mcu does not transmit a break character until after the host sends the eight security bytes. to determine whether the security code entered is correct, check to see if bit 6 of ram address $80 is set. if it is, then the correct security code has been entered and flash can be accessed. if the security sequence fails, the device should be reset by a power-on reset and brought up in monitor mode to attempt another entry. after failing the security sequence, the flash module can also be mass erased by executing an erase routine that was downloaded into internal ram. the mass erase operation clears the security code locations so that all eight security bytes become $ff (blank). byte 1 byte 1 echo byte 2 byte 2 echo byte 8 byte 8 echo command command echo pa0 rst v dd 4096 + 32 cgmxclk cycles 256 bus cycles 1 4 1 1 2 1 break notes: 2 = data return delay, 2 bit times 4 = wait 1 bit time before sending next byte. 4 from host from mcu 1 = echo delay, 2 bit times (minimum)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola timer interface module (tim) 129 non-disclosure agreement required data sheet ? mc68hc908qy4 section 10. timer interface module (tim) 10.1 contents 10.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 10.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 10.4 pin name conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 10.5 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 10.5.1 tim counter prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.2 input capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.3 output compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.3.1 unbuffered output compare . . . . . . . . . . . . . . . . . . . . .134 10.5.3.2 buffered output compare . . . . . . . . . . . . . . . . . . . . . . .135 10.5.4 pulse width modulation (pwm) . . . . . . . . . . . . . . . . . . . . .135 10.5.4.1 unbuffered pwm signal generation . . . . . . . . . . . . . . .136 10.5.4.2 buffered pwm signal generation . . . . . . . . . . . . . . . . .137 10.5.4.3 pwm initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 10.6 interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 10.7 wait mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 10.8 tim during break interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .140 10.9 input/output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 10.10 input/output registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 10.10.1 tim status and control register . . . . . . . . . . . . . . . . . . . .141 10.10.2 tim counter registers . . . . . . . . . . . . . . . . . . . . . . . . . . .143 10.10.3 tim counter modulo registers . . . . . . . . . . . . . . . . . . . . .144 10.10.4 tim channel status and control registers . . . . . . . . . . . .145 10.10.5 tim channel registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .148
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 130 timer interface module (tim) motorola timer interface module (tim) non-disclosure agreement required 10.2 introduction this section describes the timer interface module (tim). the tim is a two-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. figure 10-1 is a block diagram of the tim. 10.3 features features of the tim include the following:  two input capture/output compare channels ? rising-edge, falling-edge, or any-edge input capture trigger ? set, clear, or toggle output compare action  buffered and unbuffered pulse width modulation (pwm) signal generation  programmable tim clock input with 7-frequency internal bus clock prescaler selection  free-running or modulo up-count operation  toggle any channel pin on overflow  tim counter stop and reset bits 10.4 pin name conventions the tim shares two input/output (i/o) pins with two port a i/o pins. the full names of the tim i/o pins are listed in table 10-1 . the generic pin name appear in the text that follows. table 10-1. pin name conventions tim generic pin names: tch0 tch1 full tim pin names: pta0/tch0 pta1/tch1
timer interface module (tim) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola timer interface module (tim) 131 non-disclosure agreement required 10.5 functional description figure 10-1 shows the structure of the tim. the central component of the tim is the 16-bit tim counter that can operate as a free-running counter or a modulo up-counter. the tim counter provides the timing reference for the input capture and output compare functions. the tim counter modulo registers, tmodh:tmodl, control the modulo value of the tim counter. software can read the tim counter value at any time without affecting the counting sequence. the two tim channels are programmable independently as input capture or output compare channels. figure 10-1. tim block diagram prescaler prescaler select 16-bit comparator ps2 ps1 ps0 16-bit comparator 16-bit latch tch0h:tch0l ms0a els0b els0a tof toie 16-bit comparator 16-bit latch tch1h:tch1l channel 0 channel 1 tmodh:tmodl trst tstop tov0 ch0ie ch0f els1b els1a tov1 ch1ie ch1max ch1f ch0max ms0b 16-bit counter internal bus ms1a internal bus clock tch1 tch0 interrupt logic port logic interrupt logic interrupt logic port logic
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 132 timer interface module (tim) motorola timer interface module (tim) non-disclosure agreement required addr.register name bit 7654321bit 0 $0020 tim status and control register (tsc) see page 141. read: tof toie tstop 00 ps2 ps1 ps0 write: 0 trst reset:00100000 $0021 tim counter register high (tcnth) see page 144. read: bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 write: reset:00000000 $0022 tim counter register low (tcntl) see page 144. read: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 write: reset:00000000 $0023 tim counter modulo register high (tmodh) see page 144. read: bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 write: reset:11111111 $0024 tim counter modulo register low (tmodl) see page 144. read: bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0 write: reset:11111111 $0025 tim channel 0 status and control register (tsc0) see page 145. read: ch0f ch0ie ms0b ms0a els0b els0a tov0 ch0max write: 0 reset:00000000 $0026 tim channel 0 register high (tch0h) see page 149. read: bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 write: reset: indeterminate after reset $0027 tim channel 0 register low (tch0l) see page 149. read: bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0 write: reset: indeterminate after reset $0028 tim channel 1 status and control register (tsc1) see page 145. read: ch1f ch1ie 0 ms1a els1b els1a tov1 ch1max write: 0 reset:00000000 = unimplemented figure 10-2. tim i/o register summary
timer interface module (tim) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola timer interface module (tim) 133 non-disclosure agreement required 10.5.1 tim counter prescaler the tim clock source is one of the seven prescaler outputs. the prescaler generates seven clock rates from the internal bus clock. the prescaler select bits, ps[2:0], in the tim status and control register (tsc) select the tim clock source. 10.5.2 input capture with the input capture function, the tim can capture the time at which an external event occurs. when an active edge occurs on the pin of an input capture channel, the tim latches the contents of the tim counter into the tim channel registers, tchxh:tchxl. the polarity of the active edge is programmable. input captures can generate tim central processor unit (cpu) interrupt requests. 10.5.3 output compare with the output compare function, the tim can generate a periodic pulse with a programmable polarity, duration, and frequency. when the counter reaches the value in the registers of an output compare channel, the tim can set, clear, or toggle the channel pin. output compares can generate tim cpu interrupt requests. $0029 tim channel 1 register high (tch1h) see page 149. read: bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 write: reset: indeterminate after reset $002a tim channel 1 register low (tch1l) see page 149. read: bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0 write: reset: indeterminate after reset addr.register name bit 7654321bit 0 = unimplemented figure 10-2. tim i/o register summary (continued)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 134 timer interface module (tim) motorola timer interface module (tim) non-disclosure agreement required 10.5.3.1 unbuffered output compare any output compare channel can generate unbuffered output compare pulses as described in 10.5.3 output compare . the pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the tim channel registers. an unsynchronized write to the tim channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. for example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. also, using a tim overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. the tim may pass the new value before it is written. use the following methods to synchronize unbuffered changes in the output compare value on channel x:  when changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. the output compare interrupt occurs at the end of the current output compare pulse. the interrupt routine has until the end of the counter overflow period to write the new value.  when changing to a larger output compare value, enable tim overflow interrupts and write the new value in the tim overflow interrupt routine. the tim overflow interrupt occurs at the end of the current counter overflow period. writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period.
timer interface module (tim) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola timer interface module (tim) 135 non-disclosure agreement required 10.5.3.2 buffered output compare channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the tch0 pin. the tim channel registers of the linked pair alternately control the output. setting the ms0b bit in tim channel 0 status and control register (tsc0) links channel 0 and channel 1. the output compare value in the tim channel 0 registers initially controls the output on the tch0 pin. writing to the tim channel 1 registers enables the tim channel 1 registers to synchronously control the output after the tim overflows. at each subsequent overflow, the tim channel registers (0 or 1) that control the output are the ones written to last. tsc0 controls and monitors the buffered output compare function, and tim channel 1 status and control register (tsc1) is unused. while the ms0b bit is set, the channel 1 pin, tch1, is available as a general-purpose i/o pin. note: in buffered output compare operation, do not write new output compare values to the currently active channel registers. user software should track the currently active channel to prevent writing a new value to the active channel. writing to the active channel registers is the same as generating unbuffered output compares. 10.5.4 pulse width modulation (pwm) by using the toggle-on-overflow feature with an output compare channel, the tim can generate a pwm signal. the value in the tim counter modulo registers determines the period of the pwm signal. the channel pin toggles when the counter reaches the value in the tim counter modulo registers. the time between overflows is the period of the pwm signal. as figure 10-3 shows, the output compare value in the tim channel registers determines the pulse width of the pwm signal. the time between overflow and output compare is the pulse width. program the tim to clear the channel pin on output compare if the state of the pwm pulse is logic 1. program the tim to set the pin if the state of the pwm pulse is logic 0.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 136 timer interface module (tim) motorola timer interface module (tim) non-disclosure agreement required figure 10-3. pwm period and pulse width the value in the tim counter modulo registers and the selected prescaler output determines the frequency of the pwm output. the frequency of an 8-bit pwm signal is variable in 256 increments. writing $00ff (255) to the tim counter modulo registers produces a pwm period of 256 times the internal bus clock period if the prescaler select value is 000. see 10.10.1 tim status and control register . the value in the tim channel registers determines the pulse width of the pwm output. the pulse width of an 8-bit pwm signal is variable in 256 increments. writing $0080 (128) to the tim channel registers produces a duty cycle of 128/256 or 50%. 10.5.4.1 unbuffered pwm signal generation any output compare channel can generate unbuffered pwm pulses as described in 10.5.4 pulse width modulation (pwm) . the pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the tim channel registers. an unsynchronized write to the tim channel registers to change a pulse width value could cause incorrect operation for up to two pwm periods. for example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that pwm period. also, using a tim overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. the tim may pass the new value before it is written. tchx period pulse width overflow overflow overflow output compare output compare output compare
timer interface module (tim) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola timer interface module (tim) 137 non-disclosure agreement required use the following methods to synchronize unbuffered changes in the pwm pulse width on channel x:  when changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. the output compare interrupt occurs at the end of the current pulse. the interrupt routine has until the end of the pwm period to write the new value.  when changing to a longer pulse width, enable tim overflow interrupts and write the new value in the tim overflow interrupt routine. the tim overflow interrupt occurs at the end of the current pwm period. writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same pwm period. note: in pwm signal generation, do not program the pwm channel to toggle on output compare. toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. toggling on output compare also can cause incorrect pwm signal generation when changing the pwm pulse width to a new, much larger value. 10.5.4.2 buffered pwm signal generation channels 0 and 1 can be linked to form a buffered pwm channel whose output appears on the tch0 pin. the tim channel registers of the linked pair alternately control the pulse width of the output. setting the ms0b bit in tim channel 0 status and control register (tsc0) links channel 0 and channel 1. the tim channel 0 registers initially control the pulse width on the tch0 pin. writing to the tim channel 1 registers enables the tim channel 1 registers to synchronously control the pulse width at the beginning of the next pwm period. at each subsequent overflow, the tim channel registers (0 or 1) that control the pulse width are the ones written to last. tsc0 controls and monitors the buffered pwm function, and tim channel 1 status and control register (tsc1) is unused. while the ms0b bit is set, the channel 1 pin, tch1, is available as a general-purpose i/o pin.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 138 timer interface module (tim) motorola timer interface module (tim) non-disclosure agreement required note: in buffered pwm signal generation, do not write new pulse width values to the currently active channel registers. user software should track the currently active channel to prevent writing a new value to the active channel. writing to the active channel registers is the same as generating unbuffered pwm signals. 10.5.4.3 pwm initialization to ensure correct operation when generating unbuffered or buffered pwm signals, use the following initialization procedure: 1. in the tim status and control register (tsc): a. stop the tim counter by setting the tim stop bit, tstop. b. reset the tim counter and prescaler by setting the tim reset bit, trst. 2. in the tim counter modulo registers (tmodh:tmodl), write the value for the required pwm period. 3. in the tim channel x registers (tchxh:tchxl), write the value for the required pulse width. 4. in tim channel x status and control register (tscx): a. write 0:1 (for unbuffered output compare or pwm signals) or 1:0 (for buffered output compare or pwm signals) to the mode select bits, msxb:msxa. see table 10-3 . b. write 1 to the toggle-on-overflow bit, tovx. c. write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, elsxb:elsxa. the output action on compare must force the output to the complement of the pulse width level. see table 10-3 . note: in pwm signal generation, do not program the pwm channel to toggle on output compare. toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. toggling on output compare can also cause incorrect pwm signal generation when changing the pwm pulse width to a new, much larger value. 5. in the tim status control register (tsc), clear the tim stop bit, tstop.
timer interface module (tim) interrupts mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola timer interface module (tim) 139 non-disclosure agreement required setting ms0b links channels 0 and 1 and configures them for buffered pwm operation. the tim channel 0 registers (tch0h:tch0l) initially control the buffered pwm output. tim status control register 0 (tscr0) controls and monitors the pwm signal from the linked channels. ms0b takes priority over ms0a. clearing the toggle-on-overflow bit, tovx, inhibits output toggles on tim overflows. subsequent output compares try to force the output to a state it is already in and have no effect. the result is a 0% duty cycle output. setting the channel x maximum duty cycle bit (chxmax) and setting the tovx bit generates a 100% duty cycle output. see 10.10.4 tim channel status and control registers . 10.6 interrupts the following tim sources can generate interrupt requests:  tim overflow flag (tof) ? the tof bit is set when the tim counter reaches the modulo value programmed in the tim counter modulo registers. the tim overflow interrupt enable bit, toie, enables tim overflow cpu interrupt requests. tof and toie are in the tim status and control register.  tim channel flags (ch1f:ch0f) ? the chxf bit is set when an input capture or output compare occurs on channel x. channel x tim cpu interrupt requests are controlled by the channel x interrupt enable bit, chxie. channel x tim cpu interrupt requests are enabled when chxie =1. chxf and chxie are in the tim channel x status and control register. 10.7 wait mode the wait instruction puts the mcu in low power-consumption standby mode. the tim remains active after the execution of a wait instruction. in wait mode the tim registers are not accessible by the cpu. any enabled cpu interrupt request from the tim can bring the mcu out of wait mode.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 140 timer interface module (tim) motorola timer interface module (tim) non-disclosure agreement required if tim functions are not required during wait mode, reduce power consumption by stopping the tim before executing the wait instruction. 10.8 tim during break interrupts a break interrupt stops the tim counter. the system integration module (sim) controls whether status bits in other modules can be cleared during the break state. the bcfe bit in the break flag control register (bfcr) enables software to clear status bits during the break state. see 7.9.2 break flag control register . to allow software to clear status bits during a break interrupt, write a logic 1 to the bcfe bit. if a status bit is cleared during the break state, it remains cleared when the mcu exits the break state. to protect status bits during the break state, write a logic 0 to the bcfe bit. with bcfe at logic 0 (its default state), software can read and write i/o registers during the break state without affecting status bits. some status bits have a two-step read/write clearing procedure. if software does the first step on such a bit before the break, the bit cannot change during the break state as long as bcfe is at logic 0. after the break, doing the second step clears the status bit. 10.9 input/output signals port a shares two of its pins with the tim. the two tim channel i/o pins are pta0/tch0 and pta1/tch1. each channel i/o pin is programmable independently as an input capture pin or an output compare pin. pta0/tch0 can be configured as a buffered output compare or buffered pwm pin.
timer interface module (tim) input/output registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola timer interface module (tim) 141 non-disclosure agreement required 10.10 input/output registers the following i/o registers control and monitor operation of the tim:  tim status and control register (tsc)  tim control registers (tcnth:tcntl)  tim counter modulo registers (tmodh:tmodl)  tim channel status and control registers (tsc0 and tsc1)  tim channel registers (tch0h:tch0l and tch1h:tch1l) 10.10.1 tim status and control register the tim status and control register (tsc) does the following:  enables tim overflow interrupts  flags tim overflows  stops the tim counter  resets the tim counter  prescales the tim counter clock address: $0020 bit 7654321bit 0 read: tof toie tstop 00 ps2 ps1 ps0 write: 0 trst reset:00100000 = unimplemented figure 10-4. tim status and control register (tsc)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 142 timer interface module (tim) motorola timer interface module (tim) non-disclosure agreement required tof ? tim overflow flag bit this read/write flag is set when the tim counter reaches the modulo value programmed in the tim counter modulo registers. clear tof by reading the tim status and control register when tof is set and then writing a logic 0 to tof. if another tim overflow occurs before the clearing sequence is complete, then writing logic 0 to tof has no effect. therefore, a tof interrupt request cannot be lost due to inadvertent clearing of tof. reset clears the tof bit. writing a logic 1 to tof has no effect. 1 = tim counter has reached modulo value 0 = tim counter has not reached modulo value toie ? tim overflow interrupt enable bit this read/write bit enables tim overflow interrupts when the tof bit becomes set. reset clears the toie bit. 1 = tim overflow interrupts enabled 0 = tim overflow interrupts disabled tstop ? tim stop bit this read/write bit stops the tim counter. counting resumes when tstop is cleared. reset sets the tstop bit, stopping the tim counter until software clears the tstop bit. 1 = tim counter stopped 0 = tim counter active note: do not set the tstop bit before entering wait mode if the tim is required to exit wait mode. trst ? tim reset bit setting this write-only bit resets the tim counter and the tim prescaler. setting trst has no effect on any other registers. counting resumes from $0000. trst is cleared automatically after the tim counter is reset and always reads as logic 0. reset clears the trst bit. 1 = prescaler and tim counter cleared 0 = no effect note: setting the tstop and trst bits simultaneously stops the tim counter at a value of $0000.
timer interface module (tim) input/output registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola timer interface module (tim) 143 non-disclosure agreement required ps[2:0] ? prescaler select bits these read/write bits select one of the seven prescaler outputs as the input to the tim counter as table 10-2 shows. reset clears the ps[2:0] bits. 10.10.2 tim counter registers the two read-only tim counter registers contain the high and low bytes of the value in the tim counter. reading the high byte (tcnth) latches the contents of the low byte (tcntl) into a buffer. subsequent reads of tcnth do not affect the latched tcntl value until tcntl is read. reset clears the tim counter registers. setting the tim reset bit (trst) also clears the tim counter registers. note: if you read tcnth during a break interrupt, be sure to unlatch tcntl by reading tcntl before exiting the break interrupt. otherwise, tcntl retains the value latched during the break. table 10-2. prescaler selection ps2 ps1 ps0 tim clock source 0 0 0 internal bus clock 1 0 0 1 internal bus clock 2 0 1 0 internal bus clock 4 0 1 1 internal bus clock 8 1 0 0 internal bus clock 16 1 0 1 internal bus clock 32 1 1 0 internal bus clock 64 1 1 1 not available
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 144 timer interface module (tim) motorola timer interface module (tim) non-disclosure agreement required 10.10.3 tim counter modulo registers the read/write tim modulo registers contain the modulo value for the tim counter. when the tim counter reaches the modulo value, the overflow flag (tof) becomes set, and the tim counter resumes counting from $0000 at the next timer clock. writing to the high byte (tmodh) inhibits the tof bit and overflow interrupts until the low byte (tmodl) is written. reset sets the tim counter modulo registers. note: reset the tim counter before writing to the tim counter modulo registers. address: $0021 tcnth bit 7654321bit 0 read: bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 write: reset:00000000 address: $0022 tcntl bit 7654321bit 0 read: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 write: reset:00000000 = unimplemented figure 10-5. tim counter registers (tcnth:tcntl) address: $0023 tmodh bit 7654321bit 0 read: bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 write: reset:11111111 address: $0024 tmodl bit 7654321bit 0 read: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 write: reset:11111111 figure 10-6. tim counter modulo registers (tmodh:tmodl)
timer interface module (tim) input/output registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola timer interface module (tim) 145 non-disclosure agreement required 10.10.4 tim channel status and control registers each of the tim channel status and control registers does the following:  flags input captures and output compares  enables input capture and output compare interrupts  selects input capture, output compare, or pwm operation  selects high, low, or toggling output on output compare  selects rising edge, falling edge, or any edge as the active input capture trigger  selects output toggling on tim overflow  selects 0% and 100% pwm duty cycle  selects buffered or unbuffered output compare/pwm operation chxf ? channel x flag bit when channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. when channel x is an output compare channel, chxf is set when the value in the tim counter registers matches the value in the tim channel x registers. address: $0025 tsc0 bit 7654321bit 0 read: ch0f ch0ie ms0b ms0a els0b els0a tov0 ch0max write: 0 reset:00000000 address: $0028 tsc1 bit 7654321bit 0 read: ch1f ch1ie 0 ms1a els1b els1a tov1 ch1max write: 0 reset:00000000 = unimplemented figure 10-7. tim channel status and control registers (tsc0:tsc1)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 146 timer interface module (tim) motorola timer interface module (tim) non-disclosure agreement required clear chxf by reading the tim channel x status and control register with chxf set and then writing a logic 0 to chxf. if another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to chxf has no effect. therefore, an interrupt request cannot be lost due to inadvertent clearing of chxf. reset clears the chxf bit. writing a logic 1 to chxf has no effect. 1 = input capture or output compare on channel x 0 = no input capture or output compare on channel x chxie ? channel x interrupt enable bit this read/write bit enables tim cpu interrupt service requests on channel x. reset clears the chxie bit. 1 = channel x cpu interrupt requests enabled 0 = channel x cpu interrupt requests disabled msxb ? mode select bit b this read/write bit selects buffered output compare/pwm operation. msxb exists only in the tim channel 0 status and control register. setting ms0b disables the channel 1 status and control register and reverts tch1 to general-purpose i/o. reset clears the msxb bit. 1 = buffered output compare/pwm operation enabled 0 = buffered output compare/pwm operation disabled msxa ? mode select bit a when elsxb:a 00, this read/write bit selects either input capture operation or unbuffered output compare/pwm operation. see table 10-3 . 1 = unbuffered output compare/pwm operation 0 = input capture operation when elsxb:a = 00, this read/write bit selects the initial output level of the tchx pin (see table 10-3 ). reset clears the msxa bit. 1 = initial output level low 0 = initial output level high note: before changing a channel function by writing to the msxb or msxa bit, set the tstop and trst bits in the tim status and control register (tsc).
timer interface module (tim) input/output registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola timer interface module (tim) 147 non-disclosure agreement required elsxb and elsxa ? edge/level select bits when channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. when channel x is an output compare channel, elsxb and elsxa control the channel x output behavior when an output compare occurs. when elsxb and elsxa are both clear, channel x is not connected to an i/o port, and pin tchx is available as a general-purpose i/o pin. table 10-3 shows how elsxb and elsxa work. reset clears the elsxb and elsxa bits. note: after initially enabling a tim channel register for input capture operation and selecting the edge sensitivity, clear chxf to ignore any erroneous edge detection flags. table 10-3. mode, edge, and level selection msxb msxa elsxb elsxa mode configuration x0 0 0 output preset pin under port control; initial output level high x1 0 0 pin under port control; initial output level low 00 0 1 input capture capture on rising edge only 0 0 1 0 capture on falling edge only 00 1 1 capture on rising or falling edge 01 0 1 output compare or pwm toggle output on compare 0 1 1 0 clear output on compare 0 1 1 1 set output on compare 1x 0 1 buffered output compare or buffered pwm toggle output on compare 1 x 1 0 clear output on compare 1 x 1 1 set output on compare
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 148 timer interface module (tim) motorola timer interface module (tim) non-disclosure agreement required tovx ? toggle-on-overflow bit when channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the tim counter overflows. when channel x is an input capture channel, tovx has no effect. reset clears the tovx bit. 1 = channel x pin toggles on tim counter overflow. 0 = channel x pin does not toggle on tim counter overflow. note: when tovx is set, a tim counter overflow takes precedence over a channel x output compare if both occur at the same time. chxmax ? channel x maximum duty cycle bit when the tovx bit is at logic 1, setting the chxmax bit forces the duty cycle of buffered and unbuffered pwm signals to 100%. as figure 10-8 shows, the chxmax bit takes effect in the cycle after it is set or cleared. the output stays at the 100% duty cycle level until the cycle after chxmax is cleared. figure 10-8. chxmax latency 10.10.5 tim channel registers these read/write registers contain the captured tim counter value of the input capture function or the output compare value of the output compare function. the state of the tim channel registers after reset is unknown. output overflow tchx period chxmax overflow overflow overflow overflow compare output compare output compare output compare
timer interface module (tim) input/output registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola timer interface module (tim) 149 non-disclosure agreement required in input capture mode (msxb:msxa = 0:0), reading the high byte of the tim channel x registers (tchxh) inhibits input captures until the low byte (tchxl) is read. in output compare mode (msxb:msxa 0:0), writing to the high byte of the tim channel x registers (tchxh) inhibits output compares until the low byte (tchxl) is written. address: $0026 tch0h bit 7654321bit 0 read: bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 write: reset: indeterminate after reset address: $0027 tch0l bit 7654321bit 0 read: bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0 write: reset: indeterminate after reset address: $0029 tch1h bit 7654321bit 0 read: bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 write: reset: indeterminate after reset address: $02a tch1l bit 7654321bit 0 read: bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0 write: reset: indeterminate after reset figure 10-9. tim channel registers (tch0h/l:tch1h/l)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 150 timer interface module (tim) motorola timer interface module (tim) non-disclosure agreement required
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola analog-to-digital converter (adc) 151 non-disclosure agreement required data sheet ? mc68hc908qy4 section 11. analog-to-digital converter (adc) 11.1 contents 11.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151 11.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152 11.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152 11.4.1 adc port i/o pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 11.4.2 voltage conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 11.4.3 conversion time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 11.4.4 continuous conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .155 11.4.5 accuracy and precision . . . . . . . . . . . . . . . . . . . . . . . . . . .155 11.5 interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 11.6 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 11.6.1 wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 11.6.2 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 11.7 input/output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 11.8 input/output registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 11.8.1 adc status and control register. . . . . . . . . . . . . . . . . . . . 157 11.8.2 adc data register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 11.8.3 adc input clock register . . . . . . . . . . . . . . . . . . . . . . . . . 159 11.2 introduction this section describes the analog-to-digital converter (adc). the adc is an 8-bit, 4-channel analog-to-digital converter. the adc module is only available on the mc68hc908qy2, mc68hc908qt2, mc68hc908qy4, and mc68hc908qt4.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 152 analog-to-digital converter (adc) motorola analog-to-digital converter (adc) non-disclosure agreement required 11.3 features features of the adc module include:  4 channels with multiplexed input  linear successive approximation with monotonicity  8-bit resolution  single or continuous conversion  conversion complete flag or conversion complete interrupt  selectable adc clock figure 11-1 provides a summary of the input/output (i/o) registers. 11.4 functional description four adc channels are available for sampling external sources at pins pta0, pta1, pta4, and pta5. an analog multiplexer allows the single adc converter to select one of the four adc channels as an adc addr.register name bit 7654321bit 0 $003c adc status and control register (adscr) see page 157. read: coco aien adco ch4 ch3 ch2 ch1 ch0 write: reset:00011111 $003d unimplemented $003e adc data register (adr) see page 159. read: ad7 ad6 ad5 ad4 ad3 ad2 ad1 ad0 write: reset: indeterminate after reset $003f adc input clock register (adiclk) see page 159. read: adiv2 adiv1 adiv0 00000 write: reset:00000000 = unimplemented figure 11-1. adc i/o register summary
analog-to-digital converter (adc) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola analog-to-digital converter (adc) 153 non-disclosure agreement required voltage input (adcvin). adcvin is converted by the successive approximation register-based counters. the adc resolution is eight bits. when the conversion is completed, adc puts the result in the adc data register and sets a flag or generates an interrupt. figure 11-2 shows a block diagram of the adc. figure 11-2. adc block diagram internal data bus interrupt logic channel select adc clock generator conversion complete adc voltage in adcvin adc clock bus clock ch[4:0] adc data register adiv[2:0] aien coco disable disable adc channel x read ddra write ddra reset write pta read pta ddrax ptax (1 of 4 channels) adcx
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 154 analog-to-digital converter (adc) motorola analog-to-digital converter (adc) non-disclosure agreement required 11.4.1 adc port i/o pins pta0, pta1, pta4, and pta5 are general-purpose i/o pins that are shared with the adc channels. the channel select bits (adc status and control register (adscr), $003c), define which adc channel/port pin will be used as the input signal. the adc overrides the port i/o logic by forcing that pin as input to the adc. the remaining adc channels/port pins are controlled by the port i/o logic and can be used as general-purpose i/o. writes to the port register or data direction register (ddr) will not have any affect on the port pin that is selected by the adc. read of a port pin which is in use by the adc will return a logic 0 if the corresponding ddr bit is at logic 0. if the ddr bit is at logic 1, the value in the port data latch is read. 11.4.2 voltage conversion when the input voltage to the adc equals v dd , the adc converts the signal to $ff (full scale). if the input voltage equals v ss, the adc converts it to $00. input voltages between v dd and v ss are a straight-line linear conversion. all other input voltages will result in $ff if greater than v dd and $00 if less than v ss . note: input voltage should not exceed the analog supply voltages. 11.4.3 conversion time sixteen adc internal clocks are required to perform one conversion. the adc starts a conversion on the first rising edge of the adc internal clock immediately following a write to the adscr. if the adc internal clock is selected to run at 1 mhz, then one conversion will take 16 s to complete. with a 1-mhz adc internal clock the maximum sample rate is 62.5 khz. 16 adc clock cycles conversion time = adc clock frequency number of bus cycles = conversion time bus frequency
analog-to-digital converter (adc) interrupts mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola analog-to-digital converter (adc) 155 non-disclosure agreement required 11.4.4 continuous conversion in the continuous conversion mode, the adc continuously converts the selected channel filling the adc data register (adr) with new data after each conversion. data from the previous conversion will be overwritten whether that data has been read or not. conversions will continue until the adco bit is cleared. the coco bit (adscr, $003c) is set after each conversion and can be cleared by writing the adc status and control register or reading of the adc data register. 11.4.5 accuracy and precision the conversion process is monotonic and has no missing codes. 11.5 interrupts when the aien bit is set, the adc module is capable of generating a central processor unit (cpu) interrupt after each adc conversion. a cpu interrupt is generated if the coco bit is at logic 0. the coco bit is not used as a conversion complete flag when interrupts are enabled. 11.6 low-power modes the following subsections describe the adc in low-power modes. 11.6.1 wait mode the adc continues normal operation during wait mode. any enabled cpu interrupt request from the adc can bring the microcontroller unit (mcu) out of wait mode. if the adc is not required to bring the mcu out of wait mode, power down the adc by setting the ch[4:0] bits in adscr to logic 1 ? s before executing the wait instruction.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 156 analog-to-digital converter (adc) motorola analog-to-digital converter (adc) non-disclosure agreement required 11.6.2 stop mode the adc module is inactive after the execution of a stop instruction. any pending conversion is aborted. adc conversions resume when the mcu exits stop mode. allow one conversion cycle to stabilize the analog circuitry before attempting a new adc conversion after exiting stop mode. 11.7 input/output signals the adc module has four channels that are shared with i/o port a. adc voltage in (adcvin) is the input voltage signal from one of the four adc channels to the adc module. 11.8 input/output registers these i/o registers control and monitor adc operation:  adc status and control register (adscr)  adc data register (adr)  adc clock register (adiclk)
analog-to-digital converter (adc) input/output registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola analog-to-digital converter (adc) 157 non-disclosure agreement required 11.8.1 adc status and control register the following paragraphs describe the function of the adc status and control register (adscr). coco ? conversions complete bit when the aien bit is a logic 0, the coco is a read-only bit which is set each time a conversion is completed. this bit is cleared whenever adscr is written or whenever the adr is read. reset clears this bit. 1 = conversion completed (aien = 0) 0 = conversion not completed (aien = 0) when the aien bit is a logic 1 (cpu interrupt enabled), the coco is a read-only bit, and will always be logic 0 when read. aien ? adc interrupt enable bit when this bit is set, an interrupt is generated at the end of an adc conversion. the interrupt signal is cleared when adr is read or adscr is written. reset clears the aien bit. 1 = adc interrupt enabled 0 = adc interrupt disabled adco ? adc continuous conversion bit when set, the adc will convert samples continuously and update adr at the end of each conversion. only one conversion is allowed when this bit is cleared. reset clears the adco bit. 1 = continuous adc conversion 0 = one adc conversion address: $003c bit 7654321bit 0 read: coco aien adco ch4 ch3 ch2 ch1 ch0 write: reset:00011111 = unimplemented figure 11-3. adc status and control register (adscr)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 158 analog-to-digital converter (adc) motorola analog-to-digital converter (adc) non-disclosure agreement required ch[4:0] ? adc channel select bits ch4, ch3, ch2, ch1, and ch0 form a 5-bit field which is used to select one of the four adc channels. the five select bits are detailed in table 11-1 . care should be taken when using a port pin as both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal. the adc subsystem is turned off when the channel select bits are all set to 1. this feature allows for reduced power consumption for the mcu when the adc is not used. reset sets all of these bits to a logic 1. note: recovery from the disabled state requires one conversion cycle to stabilize. table 11-1. mux channel select ch4 ch3 ch2 ch1 ch0 adc channel input select 00000 adc0 pta0 00001 adc1 pta1 00010 adc2 pta4 00011 adc3 pta5 00100 ? unused (1) 1. if any unused channels are selected, the resulting adc conversion will be unknown. ? 11010 ? 11011 ? reserved 11 1 0 0 ? unused 11 1 0 1 ? v dda (2) 2. the voltage levels supplied from internal reference nodes, as specified in the table, are used to verify the operation of the adc converter both in production test and for user applications. 11 1 1 0 ? v ssa (2) 11 1 1 1 ? adc power off
analog-to-digital converter (adc) input/output registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola analog-to-digital converter (adc) 159 non-disclosure agreement required 11.8.2 adc data register one 8-bit result register is provided. this register is updated each time an adc conversion completes. 11.8.3 adc input clock register this register selects the clock frequency for the adc. adiv2 ? adiv0 ? adc clock prescaler bits adiv2, adiv1, and adiv0 form a 3-bit field which selects the divide ratio used by the adc to generate the internal adc clock. table 11-2 shows the available clock configurations. the adc clock should be set to approximately 1 mhz. address: $003e bit 7654321bit 0 read: ad7 ad6 ad5 ad4 ad3 ad2 ad1 ad0 write: reset: indeterminate after reset = unimplemented figure 11-4. adc data register (adr) address: $003f bit 7654321bit 0 read: adiv2 adiv1 adiv0 00000 write: reset:00000000 = unimplemented figure 11-5. adc input clock register (adiclk)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 160 analog-to-digital converter (adc) motorola analog-to-digital converter (adc) non-disclosure agreement required table 11-2. adc clock divide ratio adiv2 adiv1 adiv0 adc clock rate 0 0 0 bus clock 1 0 0 1 bus clock 2 0 1 0 bus clock 4 0 1 1 bus clock 8 1 x x bus clock 16 x = don ? t care
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola input/output (i/o) ports 161 non-disclosure agreement required data sheet ? mc68hc908qy4 section 12. input/output (i/o) ports 12.1 contents 12.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 12.3 port a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162 12.3.1 port a data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 12.3.2 data direction register a. . . . . . . . . . . . . . . . . . . . . . . . . .164 12.3.3 port a input pullup enable register. . . . . . . . . . . . . . . . . .166 12.4 port b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 12.4.1 port b data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 12.4.2 data direction register b. . . . . . . . . . . . . . . . . . . . . . . . . .168 12.4.3 port b input pullup enable register. . . . . . . . . . . . . . . . . .169 12.2 introduction the mc68hc908qt1, mc68hc908qt2, and mc68hc908qt4 have five bidirectional input-output (i/o) pins and one input only pin. the mc68hc908qy1, mc68hc908qy2, and mc68hc908qy4 have thirteen bidirectional pins and one input only pin. all i/o pins are programmable as inputs or outputs. note: connect any unused i/o pins to an appropriate logic level, either v dd or v ss . although the i/o ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage. figure 12-1 provides a summary of the i/o registers.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 162 input/output (i/o) ports motorola input/output (i/o) ports non-disclosure agreement required 12.3 port a port a is an 6-bit special function port that shares all six of its pins with the keyboard interrupt (kbi) module (see section 14. keyboard interrupt module (kbi) ). each port a pin also has a software configurable pullup device if the corresponding port pin is configured as an input port. note: pta2 is input only. when the irq function is enabled in the configuration register 2 (config2), bit 2 of the port a data register (pta) will always read a logic 0. in this case, the bih and bil instructions can be used to read the addr.register name bit 7654321bit 0 $0000 port a data register (pta) see page 163. read: 0 awul pta5 pta4 pta3 pta2 pta1 pta0 write: reset: unaffected by reset $0001 port b data register (ptb) see page 167. read: ptb7 ptb6 ptb5 ptb4 ptb3 ptb2 ptb1 ptb0 write: reset: unaffected by reset $0004 data direction register a (ddra) see page 164. read: 0 0 ddra5 ddra4 ddra3 0 ddra1 ddra0 write: reset:00000000 $0005 data direction register b (ddrb) see page 168. read: ddrb7 ddrb6 ddrb5 ddrb4 ddrb3 ddrb2 ddrb1 ddrb0 write: reset:00000000 $000b port a input pullup enable register (ptapue) see page 166. read: osc2en ptapue5 ptapue4 ptapue3 ptapue2 ptapue1 ptapue0 write: reset:00000000 $000c port b input pullup enable register (ptbpue) see page 169. read: ptbpue7 ptbpue6 ptbpue5 ptbpue4 ptbpue3 ptbpue2 ptbpue1 ptbpue0 write: reset:00000000 = unimplemented figure 12-1. i/o port register summary
input/output (i/o) ports port a mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola input/output (i/o) ports 163 non-disclosure agreement required logic level on the pta2 pin. when the irq function is disabled, these instructions will behave as if the pta2 pin is a logic 1. however, reading bit 2 of pta will read the actual logic level on the pin. 12.3.1 port a data register the port a data register (pta) contains a data latch for each of the six port a pins. pta[5:0] ? port a data bits these read/write bits are software programmable. data direction of each port a pin is under the control of the corresponding bit in data direction register a. reset has no effect on port a data. awul ? auto wake-up latch data bit this is a read-only bit which has the value of the auto wake-up interrupt request latch. the wake-up request signal is generated internally (see 14.4.4 auto wake-up interrupt request ). there is no pta6 port nor any of the associated bits such as pta6 data register, pullup enable or direction. kbi[5:0] ? port a keyboard interrupts the keyboard interrupt enable bits, kbie5 ? kbie0, in the keyboard interrupt control enable register (kbier) enable the port a pins as external interrupt pins (see section 14. keyboard interrupt module (kbi) ). address: $0000 bit 7654321bit 0 read: 0 awul pta5 pta4 pta3 pta2 pta1 pta0 write: reset: unaffected by reset additional functions: kbi5 kbi4 kbi3 kbi2 kbi1 kbi0 = unimplemented figure 12-2. port a data register (pta)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 164 input/output (i/o) ports motorola input/output (i/o) ports non-disclosure agreement required 12.3.2 data direction register a data direction register a (ddra) determines whether each port a pin is an input or an output. writing a logic 1 to a ddra bit enables the output buffer for the corresponding port a pin; a logic 0 disables the output buffer. ddra[5:0] ? data direction register a bits these read/write bits control port a data direction. reset clears ddra[5:0], configuring all port a pins as inputs. 1 = corresponding port a pin configured as output 0 = corresponding port a pin configured as input note: avoid glitches on port a pins by writing to the port a data register before changing data direction register a bits from 0 to 1. address: $0004 bit 7654321bit 0 read: 0 0 ddra5 ddra4 ddra3 0 ddra1 ddra0 write: reset:00000000 = unimplemented figure 12-3. data direction register a (ddra)
input/output (i/o) ports port a mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola input/output (i/o) ports 165 non-disclosure agreement required figure 12-4 shows the port a i/o logic. figure 12-4. port a i/o circuit note: figure 12-4 does not apply to pta2 when ddrax is a logic 1, reading address $0000 reads the ptax data latch. when ddrax is a logic 0, reading address $0000 reads the voltage level on the pin. the data latch can always be written, regardless of the state of its data direction bit. read ddra ($0004) write ddra ($0004) reset write pta ($0000) read pta ($0000) ptax ddrax ptax internal data bus 30 k ptapuex to keyboard interrupt circuit
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 166 input/output (i/o) ports motorola input/output (i/o) ports non-disclosure agreement required 12.3.3 port a input pullup enable register the port a input pullup enable register (ptapue) contains a software configurable pullup device for each if the six port a pins. each bit is individually configurable and requires the corresponding data direction register, ddrax, to be configured as input. each pullup device is automatically and dynamically disabled when its corresponding ddrax bit is configured as output. osc2en ? enable pta4 on osc2 pin this read/write bit configures the osc2 pin function when internal oscillator or rc oscillator option is selected. this bit has no effect for the xtal or external oscillator options. 1 = osc2 pin outputs the internal or rc oscillator clock (busclkx4) 0 = osc2 pin configured for pta4 i/o, having all the interrupt and pullup functions ptapue[5:0] ? port a input pullup enable bits these read/write bits are software programmable to enable pullup devices on port a pins. 1 = corresponding port a pin configured to have internal pull if its ddra bit is set to 0 0 = pullup device is disconnected on the corresponding port a pin regardless of the state of its ddra bit table 12-1 summarizes the operation of the port a pins. address: $000b bit 7654321bit 0 read: osc2en ptapue5 ptapue4 ptapue3 ptapue2 ptapue2 ptapue0 write: reset:00000000 = unimplemented figure 12-5. port a input pullup enable register (ptapue)
input/output (i/o) ports port b mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola input/output (i/o) ports 167 non-disclosure agreement required 12.4 port b port b is an 8-bit general purpose i/o port. port b is only available on the mc68hc908qy1, mc68hc908qy2, and mc68hc908qy4. 12.4.1 port b data register the port b data register (ptb) contains a data latch for each of the eight port b pins. ptb[7:0] ? port b data bits these read/write bits are software programmable. data direction of each port b pin is under the control of the corresponding bit in data direction register b. reset has no effect on port b data. table 12-1. port a pin functions ptapue bit ddra bit pta bit i/o pin mode accesses to ddra accesses to pta read/write read write 10 x (1) input, v dd (2) ddra5 ? ddra0 pin pta5 ? pta0 (3) 00x input, hi-z (4) ddra5 ? ddra0 pin pta5 ? pta0 (3) x 1 x output ddra5 ? ddra0 pta5 ? pta0 pta5 ? pta0 (5) 1. x = don ? t care 2. i/o pin pulled to v dd by internal pullup. 3. writing affects data register, but does not affect input. 4. hi-z = high impedance 5. output does not apply to pta2 address: $0001 bit 7654321bit 0 read: ptb7 ptb6 ptb5 ptb4 ptb3 ptb2 ptb1 ptb0 write: reset: unaffected by reset figure 12-6. port b data register (ptb)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 168 input/output (i/o) ports motorola input/output (i/o) ports non-disclosure agreement required 12.4.2 data direction register b data direction register b (ddrb) determines whether each port b pin is an input or an output. writing a logic 1 to a ddrb bit enables the output buffer for the corresponding port b pin; a logic 0 disables the output buffer. ddrb[7:0] ? data direction register b bits these read/write bits control port b data direction. reset clears ddrb[7:0], configuring all port b pins as inputs. 1 = corresponding port b pin configured as output 0 = corresponding port b pin configured as input note: avoid glitches on port b pins by writing to the port b data register before changing data direction register b bits from 0 to 1. figure 12-8 shows the port b i/o logic. figure 12-8. port b i/o circuit address: $0005 bit 7654321bit 0 read: ddrb7 ddrb6 ddrb5 ddrb4 ddrb3 ddrb2 ddrb1 ddrb0 write: reset:00000000 figure 12-7. data direction register b (ddrb) read ddrb ($0005) write ddrb ( $0005) reset write ptb ($0001) read ptb ($0001) ptbx ddrbx ptbx internal data bus 30 k ptbpuex
input/output (i/o) ports port b mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola input/output (i/o) ports 169 non-disclosure agreement required when ddrbx is a logic 1, reading address $0001 reads the ptbx data latch. when ddrbx is a logic 0, reading address $0001 reads the voltage level on the pin. the data latch can always be written, regardless of the state of its data direction bit. table 12-2 summarizes the operation of the port b pins. 12.4.3 port b input pullup enable register the port b input pullup enable register (ptbpue) contains a software configurable pullup device for each of the eight port b pins. each bit is individually configurable and requires the corresponding data direction register, ddrbx, be configured as input. each pullup device is automatically and dynamically disabled when its corresponding ddrbx bit is configured as output. table 12-2. port b pin functions ddrb bit ptb bit i/o pin mode accesses to ddrb accesses to ptb read/write read write 0 x (1) 1. x = don ? t care input, hi-z (2) 2. hi-z = high impedance ddrb7 ? ddrb0 pin ptb7 ? ptb0 (3) 3. writing affects data register, but does not affect the input. 1 x output ddrb7 ? ddrb0 pin ptb7 ? ptb0 address: $000c bit 7654321bit 0 read: ptbpue7 ptbpue6 ptbpue5 ptbpue4 ptbpue3 ptbpue2 ptbpue2 ptbpue0 write: reset:00000000 = unimplemented figure 12-9. port b input pullup enable register (ptbpue)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 170 input/output (i/o) ports motorola input/output (i/o) ports non-disclosure agreement required ptbpue[7:0] ? port b input pullup enable bits these read/write bits are software programmable to enable pullup devices on port b pins 1 = corresponding port b pin configured to have internal pull if its ddrb bit is set to 0 0 = pullup device is disconnected on the corresponding port b pin regardless of the state of its ddrb bit. table 12-3 summarizes the operation of the port b pins. table 12-3. port b pin functions ptbpue bit ddrb bit ptb bit i/o pin mode accesses to ddrb accesses to ptb read/write read write 10 x (1) input, v dd (2) ddrb7 ? ddrb0 pin ptb7 ? ptb0 (3) 00x input, hi-z (4) ddrb7 ? ddrb0 pin ptb7 ? ptb0 (3) x 1 x output ddrb7 ? ddrb0 ptb7 ? ptb0 ptb7 ? ptb0 1. x = don ? t care 2. i/o pin pulled to v dd by internal pullup. 3. writing affects data register, but does not affect input. 4. hi-z = high impedance
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola external interrupt (irq) 171 non-disclosure agreement required data sheet ? mc68hc908qy4 section 13. external interrupt (irq) 13.1 contents 13.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 13.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 13.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 13.5 irq pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 13.6 irq module during break interrupts . . . . . . . . . . . . . . . . . . .175 13.7 irq status and control register . . . . . . . . . . . . . . . . . . . . . .175 13.2 introduction the irq pin (external interrupt), shared with pta2 (general purpose input) and keyboard interrupt (kbi), provides a maskable interrupt input. 13.3 features features of the irq module include the following:  external interrupt pin, irq  irq interrupt control bits  hysteresis buffer  programmable edge-only or edge and level interrupt sensitivity  automatic interrupt acknowledge  selectable internal pullup resistor
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 172 external interrupt (irq) motorola external interrupt (irq) non-disclosure agreement required 13.4 functional description irq pin functionality is enabled by setting configuration register 2 (config2) irqen bit accordingly. a 0 disables the irq function and irq will assume the other shared functionalities. a1 enables the irq function. a logic 0 applied to the external interrupt pin can latch a central processur unit (cpu) interrupt request. figure 13-1 shows the structure of the irq module. interrupt signals on the irq pin are latched into the irq latch. an interrupt latch remains set until one of the following actions occurs:  vector fetch ? a vector fetch automatically generates an interrupt acknowledge signal that clears the irq latch.  software clear ? software can clear the interrupt latch by writing to the acknowledge bit in the interrupt status and control register (iscr). writing a logic 1 to the ack1 bit clears the irq latch.  reset ? a reset automatically clears the interrupt latch. figure 13-1. irq module block diagram ack1 imask1 dq ck clr irq high interrupt to mode select logic irq ff request v dd mode1 voltage detect synchro- nizer irqf1 to cpu for bil/bih instructions vector fetch decoder internal address bus reset v dd internal pullup device irq irqpud
external interrupt (irq) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola external interrupt (irq) 173 non-disclosure agreement required the external interrupt pin is falling-edge-triggered and is software- configurable to be either falling-edge or falling-edge and low-level triggered. the mode1 bit in the iscr controls the triggering sensitivity of the irq pin. when the interrupt pin is edge-triggered only, the cpu interrupt request remains set until a vector fetch, software clear, or reset occurs. when the interrupt pin is both falling-edge and low-level triggered, the cpu interrupt request remains set until both of the following occur:  vector fetch or software clear  return of the interrupt pin to logic 1 the vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. as long as the pin is low, the interrupt request remains pending. a reset will clear the latch and the mode1 control bit, thereby clearing the interrupt even if the pin stays low. when set, the imask1 bit in the iscr mask all external interrupt requests. a latched interrupt request is not presented to the interrupt priority logic unless the imask1 bit is clear. note: the interrupt mask (i) in the condition code register (ccr) masks all interrupt requests, including external interrupt requests. see 7.7 exception control . figure 13-2 provides a summary of the irq i/o register. addr.register name bit 7654321bit 0 $001d irq status and control register (intscr) see page 176. read: 0 0 0 0 irqf1 0 imask1 mode1 write: ack1 reset:00000000 = unimplemented figure 13-2. irq i/o register summary
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 174 external interrupt (irq) motorola external interrupt (irq) non-disclosure agreement required 13.5 irq pin a logic 0 on the irq pin can latch an interrupt request into the irq latch. a vector fetch, software clear, or reset clears the irq latch. if the mode1 bit is set, the irq pin is both falling-edge sensitive and low-level sensitive. with mode1 set, both of the following actions must occur to clear irq:  vector fetch or software clear ? a vector fetch generates an interrupt acknowledge signal to clear the latch. software may generate the interrupt acknowledge signal by writing a logic 1 to the ack1 bit in the interrupt status and control register (iscr). the ack1 bit is useful in applications that poll the irq pin and require software to clear the irq latch. writing to the ack1 bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. setting ack1 does not affect subsequent transitions on the irq pin. a falling edge that occurs after writing to the ack1 bit latches another interrupt request. if the irq mask bit, imask1, is clear, the cpu loads the program counter with the vector address at locations $fffa and $fffb.  return of the irq pin to logic 1 ? as long as the irq pin is at logic 0, irq remains active. the vector fetch or software clear and the return of the irq pin to logic 1 may occur in any order. the interrupt request remains pending as long as the irq pin is at logic 0. a reset will clear the latch and the mode1 control bit, thereby clearing the interrupt even if the pin stays low. if the mode1 bit is clear, the irq pin is falling-edge sensitive only. with mode1 clear, a vector fetch or software clear immediately clears the irq latch. the irqf1 bit in the iscr register can be used to check for pending interrupts. the irqf1 bit is not affected by the imask1 bit, which makes it useful in applications where polling is preferred. note: when the irq function is enabled in the config2 register, the bih and bil instructions can be used to read the logic level on the irq pin. if the irq function is disabled, these instructions will behave as if the irq pin
external interrupt (irq) irq module during break interrupts mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola external interrupt (irq) 175 non-disclosure agreement required is a logic 1, regardless of the actual level on the pin. conversely, when the irq function is enabled, bit 2 of the port a data register will always read a logic 0. note: when using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. an internal pullup resistor to v dd is connected to the irq pin; this can be disabled by setting the irqpud bit in the config2 register ($001e). 13.6 irq module during break interrupts the system integration module (sim) controls whether the irq latch can be cleared during the break state. the bcfe bit in the break flag control register (bfcr) enables software to clear the latches during the break state. see section 7. system integration module (sim) . to allow software to clear the irq latch during a break interrupt, write a logic 1 to the bcfe bit. if a latch is cleared during the break state, it remains cleared when the mcu exits the break state. to protect the latches during the break state, write a logic 0 to the bcfe bit. with bcfe at logic 0 (its default state), writing to the ack1 bit in the irq status and control register during the break state has no effect on the irq latch. 13.7 irq status and control register the irq status and control register (iscr) controls and monitors operation of the irq module, see section 5. configuration register (config) . the iscr has the following functions:  shows the state of the irq flag  clears the irq latch  masks irq and interrupt request  controls triggering sensitivity of the irq interrupt pin
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 176 external interrupt (irq) motorola external interrupt (irq) non-disclosure agreement required irqf1 ? irq flag this read-only status bit is high when the irq interrupt is pending. 1 = irq interrupt pending 0 = irq interrupt not pending ack1 ? irq interrupt request acknowledge bit writing a logic 1 to this write-only bit clears the irq latch. ack1 always reads as logic 0. reset clears ack1. imask1 ? irq interrupt mask bit writing a logic 1 to this read/write bit disables irq interrupt requests. reset clears imask1. 1 = irq interrupt requests disabled 0 = irq interrupt requests enabled mode1 ? irq edge/level select bit this read/write bit controls the triggering sensitivity of the irq pin. reset clears mode1. 1 = irq interrupt requests on falling edges and low levels 0 = irq interrupt requests on falling edges only address: $001d bit 7654321bit 0 read: 0 0 0 0 irqf1 imask1 mode1 write: ack1 reset:00000000 = unimplemented figure 13-3. irq status and control register (intscr)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola keyboard interrupt module (kbi) 177 non-disclosure agreement required data sheet ? mc68hc908qy4 section 14. keyboard interrupt module (kbi) 14.1 contents 14.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 14.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 14.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179 14.4.1 keyboard initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 14.4.2 keyboard status and control register. . . . . . . . . . . . . . . .182 14.4.3 keyboard interrupt enable register . . . . . . . . . . . . . . . . . .184 14.4.4 auto wake-up interrupt request . . . . . . . . . . . . . . . . . . . .185 14.5 wait mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 14.6 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 14.7 keyboard module during break interrupts . . . . . . . . . . . . . . .187 14.2 introduction the keyboard interrupt module (kbi) provides six independently maskable external interrupts, which are accessible via the pta0 ? pta5 pins, plus one internal maskable interrupt controlled by the auto wake-up logic.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 178 keyboard interrupt module (kbi) motorola keyboard interrupt module (kbi) non-disclosure agreement required 14.3 features features of the keyboard interrupt module include:  six keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask  one internal interrupt controlled by the auto wake-up logic, with separate interrupt enable bit, sharing the same keyboard interrupt mask  software configurable pullup device if input pin is configured as input port bit  programmable edge-only or edge and level interrupt sensitivity  exit from low-power modes figure 14-1 provides a summary of the input/output (i/o) registers addr.register name bit 7654321bit 0 $001a keyboard status and control register (kbscr) see page 183. read: 0000keyf0 imaskk modek write: ackk reset:00000000 $001b keyboard interrupt enable register (kbier) see page 184. read: 0 awuie kbie5 kbie4 kbie3 kbie2 kbie1 kbie0 write: reset:00000000 = unimplemented figure 14-1. kbi i/o register summary
keyboard interrupt module (kbi) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola keyboard interrupt module (kbi) 179 non-disclosure agreement required 14.4 functional description figure 14-2. keyboard interrupt block diagram writing to the kbie0 ? kbie5 bits in the keyboard interrupt enable register (kbier) independently enables or disables each port a pin as a keyboard interrupt pin. enabling a keyboard interrupt pin in port a also enables its internal pullup device irrespective of ptapuex bits in the port a input pullup enable register (see 12.3.3 port a input pullup enable register ). a logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. writing the awuie bit in the keyboard interrupt enable register enables or disables the auto wake-up interrupt input (see figure 14-5 ). a logic 1 applied to the awuireq input with auto wake-up interrupt request enabled, latches a keyboard interrupt request. kbie0 kbie5 . . . dq ck clr v dd modek imaskk keyboard interrupt ff vector fetch decoder ackk internal bus reset kbi5 kbi0 synchronizer keyf keyboard interrupt request to pullup enable awuireq (1) to pullup enable 1. for awugen logic refer to figure 14-5 .
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 180 keyboard interrupt module (kbi) motorola keyboard interrupt module (kbi) non-disclosure agreement required a keyboard interrupt is latched when one or more keyboard interrupt inputs goes low after all were high. the modek bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt.  if the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard interrupt input does not latch an interrupt request if another keyboard pin is already low. to prevent losing an interrupt request on one input because another input is still low, software can disable the latter input while it is low.  if the keyboard interrupt is falling edge and low-level sensitive, an interrupt request is present as long as any keyboard interrupt input is low. if the modek bit is set, the keyboard interrupt inputs are both falling edge and low-level sensitive, and both of the following actions must occur to clear a keyboard interrupt request:  vector fetch or software clear ? a vector fetch generates an interrupt acknowledge signal to clear the interrupt request. software may generate the interrupt acknowledge signal by writing a logic 1 to the ackk bit in the keyboard status and control register (kbscr). the ackk bit is useful in applications that poll the keyboard interrupt inputs and require software to clear the keyboard interrupt request. writing to the ackk bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. setting ackk does not affect subsequent transitions on the keyboard interrupt inputs. a falling edge that occurs after writing to the ackk bit latches another interrupt request. if the keyboard interrupt mask bit, imaskk, is clear, the central processor unit (cpu) loads the program counter with the vector address at locations $ffe0 and $ffe1.  return of all enabled keyboard interrupt inputs to logic 1 ? as long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set. the auto wake-up interrupt input, awuireq, will be cleared only by writing to ackk bit in kbscr or reset.
keyboard interrupt module (kbi) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola keyboard interrupt module (kbi) 181 non-disclosure agreement required the vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order. if the modek bit is clear, the keyboard interrupt pin is falling-edge sensitive only. with modek clear, a vector fetch or software clear immediately clears the keyboard interrupt request. reset clears the keyboard interrupt request and the modek bit, clearing the interrupt request even if a keyboard interrupt input stays at logic 0. the keyboard flag bit (keyf) in the keyboard status and control register can be used to see if a pending interrupt exists. the keyf bit is not affected by the keyboard interrupt mask bit (imaskk) which makes it useful in applications where polling is preferred. to determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and then read the data register. note: setting a keyboard interrupt enable bit (kbiex) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. however, the data direction register bit must be a logic 0 for software to read the pin. auto wake-up latch, awul, can be read directly from the bit 6 position of port a data register (pta). this is a read-only bit which is occupying and empty bit position on pta. no pta associated registers, such as pta6 data, pta6 direction, and pta6 pullup exist for this bit. 14.4.1 keyboard initialization when a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a logic 1. therefore a false interrupt can occur as soon as the pin is enabled. this does not apply to an auto wake-up interrupt, which is internally generated without pullup.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 182 keyboard interrupt module (kbi) motorola keyboard interrupt module (kbi) non-disclosure agreement required to prevent a false interrupt on keyboard initialization: 1. mask keyboard interrupts by setting the imaskk bit in the keyboard status and control register. 2. enable the kbi pins by setting the appropriate kbiex bits in the keyboard interrupt enable register. 3. write to the ackk bit in the keyboard status and control register to clear any false interrupts. 4. clear the imaskk bit. an interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. an interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. another way to avoid a false interrupt: 1. configure the keyboard pins as outputs by setting the appropriate ddra bits in the data direction register a. 2. write logic 1s to the appropriate port a data register bits. 3. enable the kbi pins by setting the appropriate kbiex bits in the keyboard interrupt enable register. 14.4.2 keyboard status and control register the keyboard status and control register (kbscr):  flags keyboard interrupt requests  acknowledges keyboard interrupt requests  masks keyboard interrupt requests  controls keyboard interrupt triggering sensitivity
keyboard interrupt module (kbi) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola keyboard interrupt module (kbi) 183 non-disclosure agreement required bits 7 ? 4 ? not used these read-only bits always read as logic 0s. keyf ? keyboard flag bit this read-only bit is set when a keyboard interrupt is pending on port a or auto wake-up. reset clears the keyf bit. 1 = keyboard interrupt pending 0 = no keyboard interrupt pending ackk ? keyboard acknowledge bit writing a logic 1 to this write-only bit clears the keyboard interrupt request on port a and auto wake-up logic. ackk always reads as logic 0. reset clears ackk. imaskk ? keyboard interrupt mask bit writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests on port a or auto wake-up. reset clears the imaskk bit. 1 = keyboard interrupt requests masked 0 = keyboard interrupt requests not masked modek ? keyboard triggering sensitivity bit this read/write bit controls the triggering sensitivity of the keyboard interrupt pins on port a and auto wake-up. reset clears modek. 1 = keyboard interrupt requests on falling edges and low levels 0 = keyboard interrupt requests on falling edges only address: $001a bit 7654321bit 0 read: 0 0 0 0 keyf 0 imaskk modek write: ackk reset:00000000 = unimplemented figure 14-3. keyboard status and control register (kbscr)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 184 keyboard interrupt module (kbi) motorola keyboard interrupt module (kbi) non-disclosure agreement required 14.4.3 keyboard interrupt enable register the port a keyboard interrupt enable register (kbier) enables or disables each port a pin or auto wake-up to operate as a keyboard interrupt input. kbie5 ? kbie0 ? port a keyboard interrupt enable bits each of these read/write bits enables the corresponding keyboard interrupt pin on port a to latch interrupt requests. reset clears the keyboard interrupt enable register. 1 = kbix pin enabled as keyboard interrupt pin 0 = kbix pin not enabled as keyboard interrupt pin awuie ? auto wake-up interrupt enable bit this read/write bit enables the auto wake-up interrupt input to latch interrupt requests. reset clears awuie. 1 = auto wake-up enabled as interrupt input 0 = auto wake-up not enabled as interrupt input address: $001b bit 7654321bit 0 read: 0 awuie kbie5 kbie4 kbie3 kbie2 kbie1 kbie0 write: reset:00000000 figure 14-4. keyboard interrupt enable register (kbier)
keyboard interrupt module (kbi) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola keyboard interrupt module (kbi) 185 non-disclosure agreement required 14.4.4 auto wake-up interrupt request figure 14-5. auto wake-up interrupt request generation logic the function of the auto wake-up logic is to generate periodic wake-up requests to bring the microcontroller unit (mcu) out of stop mode. the wake-up requests are treated as regular keyboard interrupt requests, with the difference that instead of a pin, the interrupt signal is generated by an internal logic. entering stop mode will enable the auto wake-up generation logic. an internal rc oscillator (exclusive for the auto wake-up feature) drives the wake-up request generator. once the overflow count is reached in the generator counter, a wake-up request, awuireq, is latched and sent to the kbi logic (see figure 14-2 ). wake-up interrupt requests will only be serviced if the associated interrupt enable bit, awuie, in kbier is set. d r v dd int rc osc en 32khz clk rst overflow autowugen short coprs (from config1) 1 = div 2 9 0 = div 2 14 e reset ackk clear rst reset clk (cgmxclk) busclkx4 istop awuireq clrlogic reset awul to pta read, bit 6 q awuie to kbi interrupt logic (see figure 14-2 )
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 186 keyboard interrupt module (kbi) motorola keyboard interrupt module (kbi) non-disclosure agreement required the overflow count can be selected from two options defined by the coprs bit in config1. this bit was ? borrowed ? from the computer operating properly (cop) using the fact that the cop feature is idle (no mcu clock available) in stop mode. the typical values of the periodic wake-up request (5 v, room temperature) are:  coprs = 0: 512 ms  coprs = 1: 16 ms the auto wake-up rc oscillator is highly dependent on operating voltage and temperature. the wake-up request is latched to allow the interrupt source identification. the latched value, awul, can be read directly from the bit 6 position of pta data register. this is a read-only bit which is occupying an empty bit position on pta. no pta associated registers, such as pta6 data, pta6 direction, and pta6 pullup exist for this bit. the latch can be cleared by writing to the ackk bit in the kbscr register. reset also clears the latch. awuie bit in kbi interrupt enable register (see figure 14-2 ) has no effect on awul reading. 14.5 wait mode the keyboard module remains active in wait mode. clearing the imaskk bit in the keyboard status and control register enables keyboard interrupt requests to bring the mcu out of wait mode. 14.6 stop mode the keyboard module remains active in stop mode. clearing the imaskk bit in the keyboard status and control register enables keyboard interrupt requests to bring the mcu out of stop mode.
keyboard interrupt module (kbi) keyboard module during break interrupts mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola keyboard interrupt module (kbi) 187 non-disclosure agreement required 14.7 keyboard module during break interrupts the system integration module (sim) controls whether the keyboard interrupt latch can be cleared during the break state. the bcfe bit in the break flag control register (bfcr) enables software to clear status bits during the break state. to allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the bcfe bit. if a latch is cleared during the break state, it remains cleared when the mcu exits the break state. to protect the latch during the break state, write a logic 0 to the bcfe bit. with bcfe at logic 0 (its default state), writing to the keyboard acknowledge bit (ackk) in the keyboard status and control register during the break state has no effect.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 188 keyboard interrupt module (kbi) motorola keyboard interrupt module (kbi) non-disclosure agreement required
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola computer operating properly (cop) 189 non-disclosure agreement required data sheet ? mc68hc908qy4 section 15. computer operating properly (cop) 15.1 contents 15.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 15.3 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 15.4 i/o signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.1 busclkx4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.2 copctl write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.3 power-on reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.4 internal reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 15.4.5 reset vector fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 15.4.6 copd (cop disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.7 coprs (cop rate select) . . . . . . . . . . . . . . . . . . . . . . . .192 15.5 cop control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.6 interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.7 monitor mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.8 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.8.1 wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.8.2 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.9 cop module during break mode . . . . . . . . . . . . . . . . . . . . . .193 15.2 introduction the computer operating properly (cop) module contains a free-running counter that generates a reset if allowed to overflow. the cop module helps software recover from runaway code. prevent a cop reset by clearing the cop counter periodically. the cop module can be disabled through the copd bit in the configuration 1 (config1) register.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 190 computer operating properly (cop) motorola computer operating properly (cop) non-disclosure agreement required 15.3 functional description figure 15-1. cop block diagram the cop counter is a free-running 6-bit counter preceded by the 12-bit system integration module (sim) counter. if not cleared by software, the cop counter overflows and generates an asynchronous reset after 2 18 ? 2 4 or 2 13 ? 2 4 busclkx4 cycles; depending on the state of the cop rate select bit, coprs, in configuration register 1. with a 2 18 ? 2 4 busclkx4 cycle overflow option, a 8-mhz crystal gives a cop timeout period of 32.766 ms. writing any value to location $ffff before an overflow occurs prevents a cop reset by clearing the cop counter and stages 12 ? 5 of the sim counter. copctl write busclkx4 reset vector fetch sim reset circuit reset status register internal reset sources (1) sim module clear stages 5 ? 12 12-bit sim counter clear all stages copd (from config1) reset copctl write clear cop module copen (from sim) cop counter 1. see section 7. system integration module (sim) for more details. cop clock cop timeout cop rate select (coprs from config1) 6-bit cop counter
computer operating properly (cop) i/o signals mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola computer operating properly (cop) 191 non-disclosure agreement required note: service the cop immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first cop counter overflow. a cop reset pulls the rst pin low for 32 busclkx4 cycles and sets the cop bit in the reset status register (rsr). see 7.9.1 sim reset status register . note: place cop clearing instructions in the main program and not in an interrupt subroutine. such an interrupt subroutine could keep the cop from generating a reset even while the main program is not working properly. 15.4 i/o signals the following paragraphs describe the signals shown in figure 15-1 . 15.4.1 busclkx4 busclkx4 is the oscillator output signal. busclkx4 frequency is equal to the crystal frequency or the rc-oscillator frequency. 15.4.2 copctl write writing any value to the cop control register (copctl) (see 15.5 cop control register ) clears the cop counter and clears bits 12 ? 5 of the sim counter. reading the cop control register returns the low byte of the reset vector. 15.4.3 power-on reset the power-on reset (por) circuit in the sim clears the sim counter 4096 busclkx4 cycles after power up.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 192 computer operating properly (cop) motorola computer operating properly (cop) non-disclosure agreement required 15.4.4 internal reset an internal reset clears the sim counter and the cop counter. 15.4.5 reset vector fetch a reset vector fetch occurs when the vector address appears on the data bus. a reset vector fetch clears the sim counter. 15.4.6 copd (cop disable) the copd signal reflects the state of the cop disable bit (copd) in the configuration register (config). see section 5. configuration register (config) . 15.4.7 coprs (cop rate select) the coprs signal reflects the state of the cop rate select bit (coprs) in the configuration register 1 (config1). see section 5. configuration register (config) . 15.5 cop control register the cop control register (copctl) is located at address $ffff and overlaps the reset vector. writing any value to $ffff clears the cop counter and starts a new timeout period. reading location $ffff returns the low byte of the reset vector. address: $ffff bit 7654321bit 0 read: low byte of reset vector write: clear cop counter reset: unaffected by reset figure 15-2. cop control register (copctl)
computer operating properly (cop) interrupts mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola computer operating properly (cop) 193 non-disclosure agreement required 15.6 interrupts the cop does not generate cpu interrupt requests. 15.7 monitor mode the cop is disabled in monitor mode when v tst is present on the irq pin. 15.8 low-power modes the wait and stop instructions put the mcu in low power- consumption standby modes. 15.8.1 wait mode the cop continues to operate during wait mode. to prevent a cop reset during wait mode, periodically clear the cop counter. 15.8.2 stop mode stop mode turns off the busclkx4 input to the cop and clears the sim counter. service the cop immediately before entering or after exiting stop mode to ensure a full cop timeout period after entering or exiting stop mode. 15.9 cop module during break mode the cop is disabled during a break interrupt with monitor mode when bdcop bit is set in break auxiliary register (brkar).
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 194 computer operating properly (cop) motorola computer operating properly (cop) non-disclosure agreement required
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola low-voltage inhibit (lvi) 195 non-disclosure agreement required data sheet ? mc68hc908qy4 section 16. low-voltage inhibit (lvi) 16.1 contents 16.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 16.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 16.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 16.4.1 polled lvi operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 16.4.2 forced reset operation . . . . . . . . . . . . . . . . . . . . . . . . . . .198 16.4.3 voltage hysteresis protection . . . . . . . . . . . . . . . . . . . . . .198 16.4.4 lvi trip selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 16.5 lvi status register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 16.6 lvi interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.7 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.7.1 wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.7.2 stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.2 introduction this section describes the low-voltage inhibit (lvi) module, which monitors the voltage on the v dd pin and can force a reset when the v dd voltage falls below the lvi trip falling voltage, v tripf .
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 196 low-voltage inhibit (lvi) motorola low-voltage inhibit (lvi) non-disclosure agreement required 16.3 features features of the lvi module include:  programmable lvi reset  programmable power consumption  selectable lvi trip voltage  programmable stop mode operation 16.4 functional description figure 16-1 shows the structure of the lvi module. lvistop, lvipwrd, lvi5or3, and lvirstd are user selectable options found in the configuration register (config1). see section 5. configuration register (config) . figure 16-1. lvi module block diagram the lvi is enabled out of reset. the lvi module contains a bandgap reference circuit and comparator. clearing the lvi power disable bit, lvipwrd, enables the lvi to monitor v dd voltage. clearing the lvi reset disable bit, lvirstd, enables the lvi module to generate a reset when v dd falls below a voltage, v tripf . setting the lvi enable in stop low v dd detector lvipwrd stop instruction lvistop lvi reset lviout v dd > lvitrip = 0 v dd lvitrip = 1 from config from config v dd from config lvirstd lvi5or3 from config
low-voltage inhibit (lvi) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola low-voltage inhibit (lvi) 197 non-disclosure agreement required mode bit, lvistop, enables the lvi to operate in stop mode. setting the lvi 5-v or 3-v trip point bit, lvi5or3, enables the trip point voltage, v tripf , to be configured for 5-v operation. clearing the lvi5or3 bit enables the trip point voltage, v tripf , to be configured for 3-v operation. the actual trip thresholds are specified in 18.6 5-v dc electrical characteristics and 18.9 3-v dc electrical characteristics . note: after a power-on reset, the lvi ? s default mode of operation is 3 volts. if a 5-v system is used, the user must set the lvi5or3 bit to raise the trip point to 5-v operation. if the user requires 5-v mode and sets the lvi5or3 bit after power-on reset while the v dd supply is not above the v tripr for 5-v mode, the microcontroller unit (mcu) will immediately go into reset. the next time the lvi releases the reset, the supply will be above the v tripr for 5-v mode. once an lvi reset occurs, the mcu remains in reset until v dd rises above a voltage, v tripr , which causes the mcu to exit reset. see section 7. system integration module (sim) for the reset recovery sequence. the output of the comparator controls the state of the lviout flag in the lvi status register (lvisr) and can be used for polling lvi operation when the lvi reset is disabled. 16.4.1 polled lvi operation in applications that can operate at v dd levels below the v tripf level, software can monitor v dd by polling the lviout bit. in the configuration register, the lvipwrd bit must be at logic 0 to enable the lvi module, and the lvirstd bit must be at logic 1 to disable lvi resets.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 198 low-voltage inhibit (lvi) motorola low-voltage inhibit (lvi) non-disclosure agreement required 16.4.2 forced reset operation in applications that require v dd to remain above the v tripf level, enabling lvi resets allows the lvi module to reset the mcu when v dd falls below the v tripf level. in the configuration register, the lvipwrd and lvirstd bits must be at logic 0 to enable the lvi module and to enable lvi resets. 16.4.3 voltage hysteresis protection once the lvi has triggered (by having v dd fall below v tripf ), the lvi will maintain a reset condition until v dd rises above the rising trip point voltage, v tripr . this prevents a condition in which the mcu is continually entering and exiting reset if v dd is approximately equal to v tripf . v tripr is greater than v tripf by the hysteresis voltage, v hys . 16.4.4 lvi trip selection the lvi5or3 bit in the configuration register selects whether the lvi is configured for 5-v or 3-v protection. note: the microcontroller is guaranteed to operate at a minimum supply voltage. the trip point (v tripf [5 v] or v tripf [3 v]) may be lower than this. see 18.6 5-v dc electrical characteristics and 18.9 3-v dc electrical characteristics for the actual trip point voltages.
low-voltage inhibit (lvi) lvi status register mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola low-voltage inhibit (lvi) 199 non-disclosure agreement required 16.5 lvi status register the lvi status register (lvisr) indicates if the v dd voltage was detected below the v tripf level while lvi resets have been disabled . lviout ? lvi output bit this read-only flag becomes set when the v dd voltage falls below the v tripf trip voltage and is cleared when v dd voltage rises above v tripr . the difference in these threshold levels results in a hysteresis that prevents oscillation into and out of reset (see table 16-1 ). reset clears the lviout bit. address: $fe0c bit 7654321bit 0 read: lviout 000000r write: reset:00000000 = unimplemented r = reserved figure 16-2. lvi status register (lvisr) table 16-1. lviout bit indication v dd lviout v dd > v tripr 0 v dd < v tripf 1 v tripf < v dd < v tripr previous value
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 200 low-voltage inhibit (lvi) motorola low-voltage inhibit (lvi) non-disclosure agreement required 16.6 lvi interrupts the lvi module does not generate interrupt requests. 16.7 low-power modes the stop and wait instructions put the mcu in low power- consumption standby modes. 16.7.1 wait mode if enabled, the lvi module remains active in wait mode. if enabled to generate resets, the lvi module can generate a reset and bring the mcu out of wait mode. 16.7.2 stop mode when the lvipwrd bit in the configuration register is cleared and the lvistop bit in the configuration register is set, the lvi module remains active in stop mode. if enabled to generate resets, the lvi module can generate a reset and bring the mcu out of stop mode.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola break module (break) 201 non-disclosure agreement required data sheet ? mc68hc908qy4 section 17. break module (break) 17.1 contents 17.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 17.3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 17.4 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 17.4.1 flag protection during break interrupts . . . . . . . . . . . . . . .204 17.4.2 cpu during break interrupts . . . . . . . . . . . . . . . . . . . . . . .204 17.4.3 tim during break interrupts . . . . . . . . . . . . . . . . . . . . . . . .204 17.4.4 cop during break interrupts . . . . . . . . . . . . . . . . . . . . . . .204 17.5 break module registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205 17.5.1 break status and control register . . . . . . . . . . . . . . . . . . .205 17.5.2 break address registers . . . . . . . . . . . . . . . . . . . . . . . . . .206 17.5.3 break auxiliary register . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 17.5.4 break status register . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 17.5.5 break flag control register . . . . . . . . . . . . . . . . . . . . . . .209 17.6 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 17.2 introduction this section describes the break module. the break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 202 break module (break) motorola break module (break) non-disclosure agreement required 17.3 features features of the break module include:  accessible input/output (i/o) registers during the break interrupt  central processor unit (cpu) generated break interrupts  software-generated break interrupts  computer operating properly (cop) disabling during break interrupts 17.4 functional description when the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal (bkpt ) to the system integration module (sim). the sim then causes the cpu to load the instruction register with a software interrupt instruction (swi) after completion of the current cpu instruction. the program counter vectors to $fffc and $fffd ($fefc and $fefd in monitor mode). the following events can cause a break interrupt to occur:  a cpu generated address (the address in the program counter) matches the contents of the break address registers.  software writes a logic 1 to the brka bit in the break status and control register. when a cpu generated address matches the contents of the break address registers, the break interrupt begins after the cpu completes its current instruction. a return-from-interrupt instruction (rti) in the break routine ends the break interrupt and returns the microcontroller unit (mcu) to normal operation. figure 17-1 shows the structure of the break module. figure 17-2 provides a summary of the i/o registers.
break module (break) functional description mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola break module (break) 203 non-disclosure agreement required figure 17-1. break module block diagram addr.register name bit 7654321bit 0 $fe00 break status register (bsr) see page 208. read: rrrrrr sbsw r write: note (1) reset: 0 $fe02 break auxiliary register (brkar) see page 207. read: bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0 write: reset:00000000 $fe03 break flag control register (bfcr) see page 209. read: bcferrrrrrr write: reset: 0 $fe09 break address high register (brkh) see page 206. read: bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 write: reset:00000000 $fe0a break address low register (brkl) see page 206. read: bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0 write: reset:00000000 $fe0b break status and control register (brkscr) see page 205. read: brke brka 000000 write: reset:00000000 1. writing a logic 0 clears sbsw. = unimplemented r = reserved figure 17-2. break i/o register summary address bus[15:8] address bus[7:0] 8-bit comparator 8-bit comparator control break address register low break address register high address bus[15:0] bkpt (to sim)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 204 break module (break) motorola break module (break) non-disclosure agreement required 17.4.1 flag protection during break interrupts the system integration module (sim) controls whether or not module status bits can be cleared during the break state. the bcfe bit in the break flag control register (bfcr) enables software to clear status bits during the break state. see 7.9.2 break flag control register and the break interrupts subsection for each module. 17.4.2 cpu during break interrupts the cpu starts a break interrupt by:  loading the instruction register with the swi instruction  loading the program counter with $fffc:$fffd ($fefc:$fefd in monitor mode) the break interrupt begins after completion of the cpu instruction in progress. if the break address register match occurs on the last cycle of a cpu instruction, the break interrupt begins immediately. 17.4.3 tim during break interrupts a break interrupt stops the timer counter. 17.4.4 cop during break interrupts the cop is disabled during a break interrupt with monitor mode when bdcop bit is set in break auxiliary register (brkar).
break module (break) break module registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola break module (break) 205 non-disclosure agreement required 17.5 break module registers these registers control and monitor operation of the break module:  break status and control register (brkscr)  break address register high (brkh)  break address register low (brkl)  break status register (bsr)  break flag control register (bfcr) 17.5.1 break status and control register the break status and control register (brkscr) contains break module enable and status bits. brke ? break enable bit this read/write bit enables breaks on break address register matches. clear brke by writing a logic 0 to bit 7. reset clears the brke bit. 1 = breaks enabled on 16-bit address match 0 = breaks disabled brka ? break active bit this read/write status and control bit is set when a break address match occurs. writing a logic 1 to brka generates a break interrupt. clear brka by writing a logic 0 to it before exiting the break routine. reset clears the brka bit. 1 = break address match 0 = no break address match address: $fe0b bit 7654321bit 0 read: brke brka 000000 write: reset:00000000 = unimplemented figure 17-3. break status and control register (brkscr)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 206 break module (break) motorola break module (break) non-disclosure agreement required 17.5.2 break address registers the break address registers (brkh and brkl) contain the high and low bytes of the desired breakpoint address. reset clears the break address registers. address: $fe09 bit 7654321bit 0 read: bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 write: reset:00000000 figure 17-4. break address register high (brkh) address: $fe0a bit 7654321bit 0 read: bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0 write: reset:00000000 figure 17-5. break address register low (brkl)
break module (break) break module registers mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola break module (break) 207 non-disclosure agreement required 17.5.3 break auxiliary register the break auxiliary register (brkar) contains a bit that enables software to disable the cop while the mcu is in a state of break interrupt with monitor mode. bdcop ? break disable cop bit this read/write bit disables the cop during a break interrupt. reset clears the bdcop bit. 1 = cop disabled during break interrupt 0 = cop enabled during break interrupt. address: $fe02 bit 7654321bit 0 read: 0 0 00000 bdcop write: reset:00000000 = unimplemented figure 17-6. break auxiliary register (brkar)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 208 break module (break) motorola break module (break) non-disclosure agreement required 17.5.4 break status register the break status register (bsr) contains a flag to indicate that a break caused an exit from wait mode. this register is only used in emulation mode. sbsw ? sim break stop/wait this status bit is useful in applications requiring a return to wait mode after exiting from a break interrupt. clear sbsw by writing a logic 0 to it. reset clears sbsw. 1 = wait mode was exited by break interrupt 0 = wait mode was not exited by break interrupt sbsw can be read within the break state swi routine. the user can modify the return address on the stack by subtracting one from it. address: $fe00 bit 7654321bit 0 read: rrrrrr sbsw r write: note (1) reset: 0 r = reserved 1. writing a logic 0 clears sbsw. figure 17-7. break status register (bsr)
break module (break) low-power modes mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola break module (break) 209 non-disclosure agreement required 17.5.5 break flag control register the break control register (bfcr) contains a bit that enables software to clear status bits while the mcu is in a break state. bcfe ? break clear flag enable bit this read/write bit enables software to clear status bits by accessing status registers while the mcu is in a break state. to clear status bits during the break state, the bcfe bit must be set. 1 = status bits clearable during break 0 = status bits not clearable during break 17.6 low-power modes the wait and stop instructions put the mcu in low power- consumption standby modes. if enabled, the break module will remain enabled in wait and stop modes. however, since the internal address bus does not increment in these modes, a break interrupt will never be triggered. address: $fe03 bit 7654321bit 0 read: bcferrrrrrr write: reset: 0 r= reserved figure 17-8. break flag control register (bfcr)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 210 break module (break) motorola break module (break) non-disclosure agreement required
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola electrical specifications 211 non-disclosure agreement required data sheet ? mc68hc908qy4 section 18. electrical specifications 18.1 contents 18.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 18.3 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . .212 18.4 functional operating range. . . . . . . . . . . . . . . . . . . . . . . . . .213 18.5 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 18.6 5-v dc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 214 18.7 5-v control timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 18.8 5-v oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 216 18.9 3-v dc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 217 18.10 3-v control timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 18.11 3-v oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 219 18.12 typical supply currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220 18.13 analog-to-digital converter characteristics . . . . . . . . . . . . . .221 18.14 memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222 18.2 introduction this section contains electrical and timing specifications.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 212 electrical specifications motorola electrical specifications non-disclosure agreement required 18.3 absolute maximum ratings maximum ratings are the extreme limits to which the microcontroller unit (mcu) can be exposed without permanently damaging it. note: this device is not guaranteed to operate properly at the maximum ratings. refer to 18.6 5-v dc electrical characteristics and 18.9 3-v dc electrical characteristics for guaranteed operating conditions. note: this device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. for proper operation, it is recommended that v in and v out be constrained to the range v ss (v in or v out ) v dd . reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either v ss or v dd .) characteristic (1) 1. voltages references to v ss . symbol value unit supply voltage v dd ? 0.3 to + 6.0 v input voltage v in v ss ? 0.3 to v dd +0.3 v mode entry voltage, irq pin v tst v ss ? 0.3 to +9.1 v maximum current per pin excluding pta0 ? pta5, v dd , and v ss i15ma maximum current for pins pta0 ? pta5 i pta0 ? i pta5 25 ma storage temperature t stg ? 55 to +150 c maximum current out of v ss i mvss 100 ma maximum current into v dd i mvdd 100 ma
electrical specifications functional operating range mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola electrical specifications 213 non-disclosure agreement required 18.4 functional operating range 18.5 thermal characteristics characteristic symbol value unit operating temperature range t a ? 40 to +125 ? 40 to +85 ? 40 to +125 ? 40 to +85 c operating voltage range v dd 5 v 10% 3 v 10% v characteristic symbol value unit thermal resistance 8-pin pdip 8-pin soic 16-pin pdip 16-pin soic 16-pin tssop ja 95 70 66 70 70 c/w i/o pin power dissipation p i/o user determined w power dissipation (1) 1. power dissipation is a function of temperature. p d p d = (i dd x v dd ) + p i/o = k/(t j + 273 c) w constant (2) 2. k constant unique to the device. k can be determined for a known t a and measured p d. with this value of k, p d and t j can be determined for any value of t a . k p d x (t a + 273 c) + p d 2 x ja w/ c average junction temperature t j t a + (p d x ja ) c maximum junction temperature t jm 100 c
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 214 electrical specifications motorola electrical specifications non-disclosure agreement required 18.6 5-v dc electrical characteristics characteristic (1) symbol min typ (2) max unit output high voltage i load = ? 2.0 ma, all i/o pins i load = ? 10.0 ma, all i/o pins i load = ? 15.0 ma, pta0 ? pta5 only v oh v dd ? 0.4 v dd ? 1.5 v dd ? 0.8 ? ? ? ? ? ? v output low voltage i load = 1.6 ma, all i/o pins i load = 10.0 ma, all i/o pins i load = 15.0 ma, pta0 ? pta5 only v ol ? ? ? ? ? ? 0.4 1.5 0.8 v input high voltage pta0 ? pta5, ptb0 ? ptb7, rst , irq , osc1 v ih 0.7 x v dd ? v dd v input low voltage pta0 ? pta5, ptb0 ? ptb7, rst , irq , osc1 v il v ss ? 0.3 x v dd v dc injection current, all ports i inj ? 2 ? +2 ma total dc current injection (sum of all i/o) i injtot ? 25 ? +25 ma v dd supply current run, f op = 4 mhz (3) wait (4) stop (5) , ? 40 c to 85 c i dd ? ? ? 7 5 0.1 10 5.5 5 ma ma a digital i/o ports hi-z leakage current i il ?? 10 a input current i in ?? 1 a capacitance ports (as input or output) c out c in ? ? ? ? 12 8 pf por rearm voltage (6) v por 0 ? 100 mv por rise time ramp rate (7) r por 0.035 ?? v/ms monitor mode entry voltage v tst v dd + 2.5 ? 9.1 v pullup resistors (8) rst , irq , pta0 ? pta5, ptb0 ? ptb7 r pu 16 26 36 k ? low-voltage inhibit reset, trip falling voltage v tripf 3.90 4.20 4.50 v continued on next page
electrical specifications 5-v control timing mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola electrical specifications 215 non-disclosure agreement required 18.7 5-v control timing low-voltage inhibit reset, trip rising voltage v tripr 4.00 4.30 4.60 v low-voltage inhibit reset/recover hysteresis v hys ? 100 ? mv 1. v dd = 4.5 to 5.5 vdc, v ss = 0 vdc, t a = t l to t h , unless otherwise noted. 2. typical values reflect average measurements at midpoint of voltage range, 25 c only. 3. run (operating) i dd measured using external square wave clock source. all inputs 0.2 v from rail. no dc loads. less than 100 pf on all outputs. all ports configured as inputs. measured with all modules enabled. 4. wait i dd measured using external square wave clock source (f op = 4mhz); all inputs 0.2 v from rail; no dc loads; less than 100 pf on all outputs. 5. all ports configured as inputs. all ports driven 0.2 v or less from rail. no dc loads. on the 8-pin versions, port b is conf igured as inputs with pullups enabled. 6. maximum is highest voltage that por is guaranteed. 7. if minimum v dd is not reached before the internal por reset is released, rst must be driven low externally until minimum v dd is reached. 8. r pu1 and r pu2 are measured at v dd = 5.0 v. characteristic (1) symbol min typ (2) max unit characteristic (1) symbol min max unit internal operating frequency (2) f op ? 8mhz rst input pulse width low (3) t irl 750 ? ns 1. v dd = 4.5 to 5.5 vdc, v ss = 0 vdc, t a = t l to t h ; timing shown with respect to 20% v dd and 70% v ss , unless otherwise noted. 2. some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. minimum pulse width reset is guaranteed to be recognized. it is possible for a smaller pulse width to cause a reset.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 216 electrical specifications motorola electrical specifications non-disclosure agreement required 18.8 5-v oscillator characteristics figure 18-1. rc versus frequency (5 volts @ 25 c) characteristic symbol min typ max unit internal oscillator frequency f intclk ? 12.8 ? mhz crystal frequency, xtalclk f oscxclk 1 ? 32 mhz rc oscillator frequency, rcclk f rcclk 2 ? 12 mhz external clock reference frequency (1) 1. no more than 10% duty cycle deviation from 50%. f oscxclk dc ? 32 mhz crystal load capacitance (2) 2. consult crystal vendor data sheet. c l ???? crystal fixed capacitance (2) c 1 ? 2 x c l ?? crystal tuning capacitance (2) c 2 ? 2 x c l ?? feedback bias resistor r b ? 10 ? m ? series resistor (2), (3) 3. not required for high frequency crystals r s ???? rc oscillator external resistor r ext see figure 18-1 ? 0 0 1020304050 14 12 10 8 6 4 2 resistor, r ext (k ? ) rc frequency, f rcclk (mhz) r ext osc1 v dd mcu 5 v @ 25 c
electrical specifications 3-v dc electrical characteristics mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola electrical specifications 217 non-disclosure agreement required 18.9 3-v dc electrical characteristics characteristic (1) symbol min typ (2) max unit output high voltage i load = ? 0.6 ma, all i/o pins i load = ? 4.0 ma, all i/o pins i load = ? 10.0 ma, pta0 ? pta4 only v oh v dd ? 0.3 v dd ? 1.0 v dd ? 0.6 ? ? ? ? ? ? v output low voltage i load = 0.5 ma, all i/o pins i load = 6.0 ma, all i/o pins i load = 10.0 ma, pta0-pta5 only v ol ? ? ? ? ? ? 0.3 1.0 0.6 v input high voltage pta0 ? pta5, ptb0 ? ptb7, rst , irq , osc1 v ih 0.7 x v dd ? v dd v input low voltage pta0 ? pta5, ptb0 ? ptb7, rst , irq , osc1 v il v ss ? 0.3 x v dd v dc injection current, all ports i inj ? 2 ? +2 ma total dc current injection (sum of all i/o) i injtot ? 25 ? +25 ma v dd supply current run, f op = 2 mhz (3) wait, f op = 2 mhz (4) stop (5) , ? 40 c to 85 c i dd ? ? ? 5 1 0.1 8 2.5 5 ma ma a digital i/o ports hi-z leakage current i il ?? 10 a input leakage current i in ?? 1 a capacitance ports (as input or output) c out c in ? ? ? ? 12 8 pf por rearm voltage (6) v por 0 ? 100 mv por rise time ramp rate (7) r por 0.035 ?? v/ms monitor mode entry voltage v tst v dd + 2.5 ? v dd + 4.0 v pullup resistors (8) r st , irq , pta0 ? pta5, ptb0 ? ptb7 r pu 16 26 36 k ? low-voltage inhibit reset, trip falling voltage v tripf 2.40 2.55 2.70 v continued on next page
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 218 electrical specifications motorola electrical specifications non-disclosure agreement required 18.10 3-v control timing low-voltage inhibit reset, trip rising voltage v tripr 2.50 2.65 2.80 v low-voltage inhibit reset/recover hysteresis v hys ? 60 ? mv 1. v dd = 2.7 to 3.3 vdc, v ss = 0 vdc, t a = t l to t h , unless otherwise noted. 2. typical values reflect average measurements at midpoint of voltage range, 25 c only. 3. run (operating) i dd measured using external square wave clock source. all inputs 0.2 v from rail. no dc loads. less than 100 pf on all outputs. all ports configured as inputs. measured with all modules enabled. 4. wait i dd measured using external square wave clock source (f op = 4 mhz); all inputs 0.2 v from rail; no dc loads; less than 100 pf on all outputs. 5. all ports configured as inputs. all ports driven 0.2 v or less from rail. no dc loads. on the 8-pin versions, port b is conf igured as inputs with pullups enabled. 6. maximum is highest voltage that por is guaranteed. 7. if minimum v dd is not reached before the internal por reset is released, rst must be driven low externally until minimum v dd is reached. 8. r pu1 and r pu2 are measured at v dd = 5.0 v characteristic (1) symbol min typ (2) max unit characteristic (1) symbol min max unit internal operating frequency (2) f op ? 4mhz rst input pulse width low (3) t irl 1.5 ? s 1. v dd = 2.7 to 3.3 vdc, v ss = 0 vdc, t a = t l to t h ; timing shown with respect to 20% v dd and 70% v dd , unless otherwise noted. 2. some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. minimum pulse width reset is guaranteed to be recognized. it is possible for a smaller pulse width to cause a reset.
electrical specifications 3-v oscillator characteristics mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola electrical specifications 219 non-disclosure agreement required 18.11 3-v oscillator characteristics figure 18-2. rc versus frequency (3 volts @ 25 c) characteristic symbol min typ max unit internal oscillator frequency f intclk ? 12.8 ? mhz crystal frequency, xtalclk f oscxclk 1 ? 16 mhz rc oscillator frequency, rcclk f rcclk 2 ? 12 mhz external clock reference frequency (1) 1. no more than 10% duty cycle deviation from 50% f oscxclk dc ? 16 mhz crystal load capacitance (2) 2. consult crystal vendor data sheet c l ???? crystal fixed capacitance (2) c 1 ? 2 x c l ?? crystal tuning capacitance (2) c 2 ? 2 x c l ?? feedback bias resistor r b ? 10 ? m ? series resistor (2), (3) 3. not required for high frequency crystals r s ???? rc oscillator external resistor r ext see figure 18-2 ? 0 0 1020304050 14 12 10 8 6 4 2 resistor, r ext (k ? ) rc frequency, f rcclk (mhz) r ext osc1 v dd mcu 3 v @ 25 c
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 220 electrical specifications motorola electrical specifications non-disclosure agreement required 18.12 typical supply currents figure 18-3. typical operating i dd , with all modules turned on (25 c) figure 18-4. typical wait mode i dd , with adc turned on (25 c) 0 2 4 6 8 10 12 0123456789 5.5 v 3.3 v f op or f bus (mhz) i dd (ma) 14 0 0.25 0.5 0.75 1 1.25 1.50 1.75 2 01 23 456 78 5.5 v 3.3 v i dd (ma) f op or f bus (mhz)
electrical specifications analog-to-digital converter characteristics mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola electrical specifications 221 non-disclosure agreement required 18.13 analog-to-digital converter characteristics characteristic symbol min max unit comments supply voltage v ddad 2.7 (v dd min) 5.5 (v dd max) v ? input voltages v adin v ss v dd v ? resolution b ad 88bits ? absolute accuracy a ad 0.5 1.5 lsb includes quantization adc internal clock f adic 0.5 1.048 mhz t adic = 1/f adic , tested only at 1 mhz conversion range r ad v ss v dd v ? power-up time t adpu 16 t adic cycles t adic = 1/f adic conversion time t adc 16 17 t adic cycles t adic = 1/f adic sample time (1) t ads 5 ? t adic cycles t adic = 1/f adic zero input reading (2) z adi 00 01 hex v in = v ss full-scale reading (3) f adi fe ff hex v in = v dd input capacitance c adi ? 8pf not tested input leakage (3) ?? 1 a ? 1. source impedances greater than 10 k ? adversely affect internal rc charging time during input sampling. 2. zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions. 3. the external system error caused by input leakage current is approximately equal to the product of r source and input current.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 222 electrical specifications motorola electrical specifications non-disclosure agreement required 18.14 memory characteristics characteristic symbol min max unit ram data retention voltage v rdr 1.3 ? v flash program bus clock frequency ? 1 ? mhz flash read bus clock frequency f read (1) 32 k 8m hz flash page erase time <1 k cycles <10 k cycles t erase (2) 1 4 ? ? ms flash mass erase time t merase (3) 4 ? ms flash pgm/erase to hven set up time t nvs 10 ? us flash high-voltage hold time t nvh 5 ? us flash high-voltage hold time (mass erase) t nvhl 100 ? us flash program hold time t pgs 5 ? us flash program time t prog 30 40 us flash return to read time t rcv (4) 1 ? us flash cumulative program hv period t hv (5) ? 4ms flash row erase endurance (6) ? 10 k ? cycles flash row program endurance (7) ? 10 k ? cycles flash data retention time (8) ? 10 ? years 1. f read is defined as the frequency range for which the flash memory can be read. 2. if the page erase time is longer than t erase (min), there is no erase disturb, but it reduces the endurance of the flash memory. 3. if the mass erase time is longer than t merase (min), there is no erase disturb, but it reduces the endurance of the flash memory. 4. t rcv is defined as the time it needs before the flash can be read after turning off the high voltage charge pump, by clearing hven to logic 0. 5. t hv is defined as the cumulative high voltage programming time to the same row before next erase. t hv must satisfy this condition: t nvs + t nvh + t pgs + (t prog x 32) t hv max. 6. the minimum row endurance value specifies each row of the flash memory is guaranteed to work for at least this many erase/program cycles. 7. the minimum row endurance value specifies each row of the flash memory is guaranteed to work for at least this many erase/program cycles. 8. the flash is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified.
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola mechanical specifications 223 non-disclosure agreement required data sheet ? mc68hc908qy4 section 19. mechanical specifications 19.1 contents 19.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223 19.3 8-pin plastic dual in-line package (case #626) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224 19.4 8-pin small outline integrated circuit package (case #968) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224 19.5 16-pin plastic dual in-line package (case #648d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 19.6 16-pin small outline integrated circuit package (case #751g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 19.7 16-pin thin shrink small outline package (case #948f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226 19.2 introduction this section gives the dimensions for:  8-pin plastic dual in-line package (pdip)  8-pin small outline integrated circuit (soic) package  16-pin pdip  16-pin soic  16-pin thin shrink small outline package (tssop)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 224 mechanical specifications motorola mechanical specifications non-disclosure agreement required 19.3 8-pin plastic dual in-line package (case #626) 19.4 8-pin small outline integrated circuit package (case #968) notes: 1. dimension l to center of lead when formed parallel. 2. package contour optional (round or square corners). 3. dimensioning and tolerancing per ansi y14.5m, 1982. style 1: 1. ac in 2. dc + in 3. dc - in 4. ac in 5. ground 6. output 7. auxiliary 8. v cc 14 5 8 f note 2 -a- -b- -t- seating plane h j g d k n c l m m a m 0.13 (0.005) b m t dim min max min max inches millimeters a 9.40 10.16 0.370 0.400 b 6.10 6.60 0.240 0.260 c 3.94 4.45 0.155 0.175 d 0.38 0.51 0.015 0.020 f 1.02 1.78 0.040 0.070 g 2.54 bsc 0.100 bsc h 0.76 1.27 0.030 0.050 j 0.20 0.30 0.008 0.012 k 2.92 3.43 0.115 0.135 l 7.62 bsc 0.300 bsc m --- 10 --- 10 n 0.76 1.01 0.030 0.040 e 0.10 (0.004) dim a min max min max inches --- 2.05 --- 0.081 millimeters a 0.05 0.20 0.002 0.008 b 0.35 0.50 0.014 0.020 c 0.18 0.27 0.007 0.011 d 5.10 5.50 0.201 0.217 e 5.10 5.45 0.201 0.215 e 1.27 bsc 0.050 bsc h 7.40 8.20 0.291 0.323 l 0.50 0.85 0.020 0.033 l 1.10 1.50 0.043 0.059 m 0 10 0 10 q 0.70 0.90 0.028 0.035 z --- 0.94 --- 0.037 notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: millimeter 3. dimension d and e do not include mold flash or protrusions and are measured at the parting line. mold flash or protrusions shall not exceed 0.15 (0.006) per side. 4. terminal numbers are shown for reference only. 5. the lead width dimension (b) does not include dambar protusion. allowable dambar protrusion shall be 0.08 (0.003) total in excess of the lead width dimension at maximum material condition. dambar cannot be located on the lower radius or the foot minimum space between protrusions and adjacent lead to be 0.46 (0.018). 1 e e 1 z d e h e 14 5 8 b 0.13 (0.005) m a 1 a c m l e l q 1 detail p p
mechanical specifications 16-pin plastic dual in-line package (case #648d) mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola mechanical specifications 225 non-disclosure agreement required 19.5 16-pin plastic dual in-line package (case #648d) 19.6 16-pin small outline integrated circuit package (case #751g) dim min max min max millimeters inches a 0.740 0.760 18.80 19.30 b 0.245 0.260 6.23 6.60 c 0.145 0.175 3.69 4.44 d 0.015 0.021 0.39 0.53 f 0.050 0.070 1.27 1.77 g 0.100 bsc 2.54 bsc h 0.050 bsc 1.27 bsc j 0.008 0.015 0.21 0.38 k 0.120 0.140 3.05 3.55 l 0.295 0.305 7.50 7.74 m 0 10 0 10 s 0.015 0.035 0.39 0.88 notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. dimension l to center of leads when formed parallel. 4. dimensions a and b do not include mold protrusion. 5. mold flash or protrusions shall not exceed 0.25 (0.010). 6. rounded corners optional. 18 16 9 -a- -b- f h 16 pl g s k c d -t- s b m 0.25 (0.010) a s t seating plane l m j d 14x b 16x seating plane s a m 0.25 b s t 16 9 8 1 h x 45 m b m 0.25 h 8x e b a e t a1 a l c q notes: 1. dimensions are in millimeters. 2. interpret dimensions and tolerances per asme y14.5m, 1994. 3. dimensions d and e do not inlcude mold protrusion. 4. maximum mold protrusion 0.15 per side. 5. dimension b does not include dambar protrusion. allowable dambar protrusion shall be 0.13 total in excess of the b dimension at maximum material condition. dim min max millimeters a 2.35 2.65 a1 0.10 0.25 b 0.35 0.49 c 0.23 0.32 d 10.15 10.45 e 7.40 7.60 e 1.27 bsc h 10.05 10.55 h 0.25 0.75 l 0.40 1.00 q 0 7
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 226 mechanical specifications motorola mechanical specifications non-disclosure agreement required 19.7 16-pin thin shrink small outline package (case #948f) dim min max min max inches millimeters a 4.90 5.10 0.193 0.200 b 4.30 4.50 0.169 0.177 c --- 1.20 --- 0.047 d 0.05 0.15 0.002 0.006 f 0.50 0.75 0.020 0.030 g 0.65 bsc 0.026 bsc h 0.18 0.28 0.007 0.011 j 0.09 0.20 0.004 0.008 j1 0.09 0.16 0.004 0.006 k 0.19 0.30 0.007 0.012 k1 0.19 0.25 0.007 0.010 l 6.40 bsc 0.252 bsc m 0 8 0 8 notes: 4. dimensioning and tolerancing per ansi y14.5m, 1982. 5. controlling dimension: millimeter. 6. dimension a does not include mold flash. protrusions or gate burrs. mold flash or gate burrs shall not exceed 0.15 (0.006) per side. 7. dimension b does not include interlead flash or protrusion. interlead flash or protrusion shall not exceed 0.25 (0.010) per side. 8. dimension k does not include dambar protrusion. allowable dambar protrusion shall be 0.08 (0.003) total in excess of the k dimension at maximum material condition. 9. terminal numbers are shown for reference only. 10. dimension a and b are to be determined at datum plane -w-. section n-n seating plane ident. pin 1 1 8 16 9 detail e j j1 b c d a k k1 h g detail e f m l 2x l/2 -u- s u 0.15 (0.006) t s u 0.15 (0.006) t s u m 0.10 (0.004) v s t 0.10 (0.004) -t- -v- -w- 0.25 (0.010) 16x ref k n n
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 motorola ordering information 227 non-disclosure agreement required data sheet ? mc68hc908qy4 section 20. ordering information 20.1 contents 20.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 20.3 mc order numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 20.2 introduction this section contains ordering numbers for mc68hc908qy1, mc68hc908qy2, mc68hc908qy4, mc68hc908qt1, mc68hc908qt2, and mc69hc908qt4. 20.3 mc order numbers table 20-1. mc order numbers mc order number adc flash memory package mc68hc908qy1 ? 1536 bytes 16-pins pdip, soic, and tssop mc68hc908qy2 yes 1536 bytes mc68hc908qy4 yes 4096 bytes mc68hc908qt1 ? 1536 bytes 8-pins pdip or soic mc68hc908qt2 yes 1536 bytes mc68hc908qt4 yes 4096 bytes temperature and package designators: c = ? 40 c to +85 c v = ? 40 c to +105 c (available for v dd = 5 v only) m = ? 40 c to +125 c (available for v dd = 5 v only) p = plastic dual in-line package (pdip) dw = small outline integrated circuit package (soic) dt = thin shrink small outline package (tssop)
mc68hc908qy4  mc68hc908qt4  mc68hc908qy2  mc68hc908qt2  mc68hc908qy1  mc68hc908qt1 228 ordering information motorola ordering information non-disclosure agreement required
non-disclosure agreement required
how to reach us: usa/europe/locations not listed: motorola literature distribution; p.o. box 5405, denver, colorado 80217 1-303-675-2140 or 1-800-441-2447 japan: motorola japan ltd.; sps, technical information center, 3-20-1, minami-azabu minato-ku, tokyo 106-8573 japan 81-3-3440-3569 asia/pacific: motorola semiconductors h.k. ltd.; silicon harbour centre, 2 dai king street, tai po industrial estate, tai po, n.t., hong kong 852-26668334 technical information center: 1-800-521-6274 home page: http://www.motorola.com/semiconductors information in this document is provided solely to enable system and software implementers to use motorola products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. motorola reserves the right to make changes without further notice to any products herein. motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ? typical ? parameters which may be provided in motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including ? typicals ? must be validated for each customer application by customer ? s technical experts. motorola does not convey any license under its patent rights nor the rights of others. motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the motorola product could create a situation where personal injury or death may occur. should buyer purchase or use motorola products for any such unintended or unauthorized application, buyer shall indemnify and hold motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that motorola was negligent regarding the design or manufacture of the part. motorola and the stylized m logo are registered in the u.s. patent and trademark office. digital dna is a trademark of motorola, inc. all other product or service names are the property of their respective owners. motorola, inc. is an equal opportunity/affirmative action employer. ? motorola, inc. 2002 non-disclosure agreement required mc68hc908qy4/d


▲Up To Search▲   

 
Price & Availability of MC68HC908QT1CDW

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X